Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang Xi Xu is active.

Publication


Featured researches published by Xiang Xi Xu.


Chinese Journal of Cancer | 2011

Loss of A-type lamin expression compromises nuclear envelope integrity in breast cancer.

Callinice D. Capo-chichi; Kathy Q. Cai; Jennifer L. Smedberg; Parvin Ganjei-Azar; Andrew K. Godwin; Xiang Xi Xu

Through advances in technology, the genetic basis of cancer has been investigated at the genomic level, and many fundamental questions have begun to be addressed. Among several key unresolved questions in cancer biology, the molecular basis for the link between nuclear deformation and malignancy has not been determined. Another hallmark of human cancer is aneuploidy; however, the causes and consequences of aneuploidy are unanswered and are hotly contested topics. We found that nuclear lamina proteins lamin A/C are absent in a significant fraction (38%) of human breast cancer tissues. Even in lamin A/C–positive breast cancer, lamin A/C expression is heterogeneous or aberrant (such as non-nuclear distribution) in the population of tumor cells, as determined by immunohistology and immunofluorescence microscopy. In most breast cancer cell lines, a significant fraction of the lamin A/C– negative population was observed. To determine the consequences of the loss of lamin A/C, we suppressed their expression by shRNA in non-cancerous primary breast epithelial cells. Down-regulation of lamin A/C in breast epithelial cells led to morphological deformation, resembling that of cancer cells, as observed by immunofluorescence microscopy. The lamin A/C–suppressed breast epithelial cells developed aneuploidy as determined by both flow Cytometry and fluorescence in situ hybridization. We conclude that the loss of nuclear envelope structural proteins lamin A/C in breast cancer underlies the two hallmarks of cancer aberrations in nuclear morphology and aneuploidy.


BMC Medicine | 2011

Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer

Callinice D. Capo-chichi; Kathy Q. Cai; Fiona Simpkins; Parvin Ganjei-Azar; Andrew K. Godwin; Xiang Xi Xu

BackgroundDespite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of the disease. Furthermore, though the atypical nuclear morphology of cancer cells is believed to be a consequence of oncogenic signaling, the molecular basis remains unclear. Another common characteristic of human cancer is aneuploidy, but the causes and its role in carcinogenesis are not well established.MethodsWe investigated the expression of the nuclear envelope proteins lamin A/C in ovarian cancer by immunohistochemistry and studied the consequence of lamin A/C suppression using siRNA in primary human ovarian surface epithelial cells in culture. We used immunofluorescence microscopy to analyze nuclear morphology, flow cytometry to analyze cellular DNA content, and fluorescence in situ hybridization to examine cell ploidy of the lamin A/C-suppressed cells.ResultsWe found that nuclear lamina proteins lamin A/C are often absent (47%) in ovarian cancer cells and tissues. Even in lamin A/C-positive ovarian cancer, the expression is heterogeneous within the population of tumor cells. In most cancer cell lines, a significant fraction of the lamin A/C-negative population was observed to intermix with the lamin A/C-positive cells. Down regulation of lamin A/C in non-cancerous primary ovarian surface epithelial cells led to morphological deformation and development of aneuploidy. The aneuploid cells became growth retarded due to a p53-dependent induction of the cell cycle inhibitor p21.ConclusionsWe conclude that the loss of nuclear envelope structural proteins, such as lamin A/C, may underlie two of the hallmarks of cancer - aberrations in nuclear morphology and aneuploidy.


PLOS ONE | 2009

Loss of GATA4 and GATA6 expression specifies ovarian cancer histological subtypes and precedes neoplastic transformation of ovarian surface epithelia.

Kathy Q. Cai; Corrado Caslini; Callinice D. Capo-chichi; Carolyn M. Slater; Elizabeth R. Smith; Hong Wu; Andres J. Klein-Szanto; Andrew K. Godwin; Xiang Xi Xu

Background The family of zinc finger-containing GATA transcription factors plays critical roles in cell lineage specification during early embryonic development and organ formation. GATA4 and GATA6 were found to be frequently lost in ovarian cancer, and the loss is proposed to account for dedifferentiation of the cancer cells. Methodology/Principal Findings We further investigated the expression of GATA4 and GATA6 in ovarian surface epithelial lesions and histological subtypes of ovarian carcinomas by immunostaining. GATA4 and GATA6 were found to be absent in high percentages (80 to 90%) of serous, clear cell, and endometrioid ovarian cancer examined. In contrast, both were found positive in 11 out of 12 cases of mucinous carcinomas, suggesting the expression of the GATA factors can distinguish mucinous cancer from other histological subtypes. GATA4 was frequently lost in preneoplastic lesions such as morphologically normal inclusion cysts and epithelial hyperplasia adjacent to malignant cells. The loss of GATA6 correlates closely with neoplastic morphological transformation of ovarian surface epithelia. In culture, GATA4 expression was progressively reduced upon passaging primary ovarian surface epithelial cells, which correlated with changes in histone modification of the GATA4 locus. A reduced GATA6 gene dosage as in GATA6 (+/−) mice led to an increased pre-neoplastic changes and inclusion cysts in the ovaries, suggesting the loss of GATA6 contributes to ovarian cancer development. Conclusions/Significance This study suggests that the expression status of GATA4 and GATA6 may dictate distinct pathologic pathways leading to serous or mucinous ovarian carcinomas. The readily loss of GATA4 expression through changes in chromatin conformation suggests a potential non-phenotypic initiating event, leading to subsequent loss of GATA6, morphological transformation, and ultimate tumorigenesis.


Molecular and Cellular Biology | 2009

Loss of GATA6 Leads to Nuclear Deformation and Aneuploidy in Ovarian Cancer

Callinice D. Capo-chichi; Kathy Q. Cai; Joseph R. Testa; Andrew K. Godwin; Xiang Xi Xu

ABSTRACT A prominent hallmark of most human cancer is aneuploidy, which is a result of the chromosomal instability of cancer cells and is thought to contribute to the initiation and progression of most carcinomas. The developmentally regulated GATA6 transcription factor is commonly lost in ovarian cancer, and the loss of its expression is closely associated with neoplastic transformation of the ovarian surface epithelium. In the present study, we found that reduction of GATA6 expression with small interfering RNA (siRNA) in human ovarian surface epithelial cells resulted in deformation of the nuclear envelope, failure of cytokinesis, and formation of polyploid and aneuploid cells. We further discovered that loss of the nuclear envelope protein emerin may mediate the consequences of GATA6 suppression. The nuclear phenotypes were reproduced by direct suppression of emerin with siRNA. Thus, we conclude that diminished expression of GATA6 leads to a compromised nuclear envelope that is causal for polyploidy and aneuploidy in ovarian tumorigenesis. The loss of emerin may be the basis of nuclear morphological deformation and subsequently the cause of aneuploidy in ovarian cancer cells.


Lancet Oncology | 2008

Ovarian ageing, follicle depletion, and cancer: a hypothesis for the aetiology of epithelial ovarian cancer involving follicle depletion

Elizabeth R. Smith; Xiang Xi Xu

The association between ovarian cancer risk and reproductive factors has been well established, and two main theories, incessant ovulation and gonadotropin stimulation, have been proposed to explain the mechanism. Recent studies using animal models of ovarian tumorigenesis, and analysis of ovarian tissues from prophylactic oophorectomies, suggest that depletion of ovarian follicles might underlie the epidemiological findings linking reproductive history and ovarian cancer risk.


Clinical Cancer Research | 2012

Src Inhibition with Saracatinib Reverses Fulvestrant Resistance in ER-Positive Ovarian Cancer Models In Vitro and In Vivo

Fiona Simpkins; Pedro Hevia-Paez; Jun Sun; Wendy Ullmer; Candace A. Gilbert; Thiago G. da Silva; Ali Pedram; Ellis R. Levin; Isildinha M. Reis; Brian Rabinovich; Diana J. Azzam; Xiang Xi Xu; Tan A. Ince; Ji Yeon Yang; Roel G.W. Verhaak; Yiling Lu; Gordon B. Mills; Joyce M. Slingerland

Purpose: More effective, less toxic treatments for recurrent ovarian cancer are needed. Although more than 60% of ovarian cancers express the estrogen receptor (ER), ER-targeted drugs have been disappointing due to drug resistance. In other estrogen-sensitive cancers, estrogen activates Src to phosphorylate p27 promoting its degradation and increasing cell-cycle progression. Because Src is activated in most ovarian cancers, we investigated whether combined Src and ER blockade by saracatinib and fulvestrant would circumvent antiestrogen resistance. Experimental Design: ER and Src were assayed in 338 primary ovarian cancers. Dual ER and Src blockade effects on cell cycle, ER target gene expression, and survival were assayed in ERα+ ovarian cancer lines, a primary human ovarian cancer culture in vitro, and on xenograft growth. Results: Most primary ovarian cancers express ER. Src activity was greater in ovarian cancer lines than normal epithelial lines. Estrogen activated Src, ER-Src binding, and ER translocation from cytoplasm to nucleus. Estrogen-mediated mitogenesis was via ERα, not ERβ. While each alone had little effect, combined saracatinib and fulvestrant increased p27 and inhibited cyclin E-Cdk2 and cell-cycle progression. Saracatinib also impaired induction of ER-target genes c-Myc and FOSL1; this was greatest with dual therapy. Combined therapy induced autophagy and more effectively inhibited ovarian cancer xenograft growth than monotherapy. Conclusions: Saracatinib augments effects of fulvestrant by opposing estrogen-mediated Src activation and target gene expression, increasing cell-cycle arrest, and impairing survival, all of which would oppose antiestrogen resistance in these ER+ ovarian cancer models. These data support further preclinical and clinical evaluation of combined fulvestrant and saracatinib in ovarian cancer. Clin Cancer Res; 18(21); 5911–23. ©2012 AACR.


Genesis | 2009

Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation

Robert Moore; Kathy Q. Cai; Diogo O. Escudero; Xiang Xi Xu

The classical cell sorting experiments undertaken by Townes and Holtfreter described the intrinsic propensity of dissociated embryonic cells to self‐organize and reconcile into their original embryonic germ layers with characteristic histotypic positioning. Steinberg presented the differential adhesion hypothesis to explain these patterning phenomena. Here, we have reappraised these issues by implementing embryoid bodies to model the patterning of epiblast and primitive endoderm layers. We have used combinations of embryonic stem (ES) cells and their derivatives differentiated by retinoic acid treatment to model epiblast and endoderm cells, and wild‐type or E‐cadherin null cells to represent strongly or weakly adherent cells, respectively. One cell type was fluorescently labeled and reconstituted with another heterotypically to generate chimeric embryoid bodies, and cell sorting was tracked by time‐lapse video microscopy and confirmed by immunostaining. When undifferentiated wild‐type and E‐cadherin null ES cells were mixed, the resulting cell aggregates consisted of a core of wild‐type cells surrounded by loosely associated E‐cadherin null cells, consistent with the differential adhesion hypothesis. However, when mixed with undifferentiated ES cells, the differentiated primitive endoderm‐like cells sorted to the surface to form a primitive endoderm layer irrespective of cell‐adhesive strength, contradicting the differential adhesion hypothesis. We propose that the primitive endoderm cells reach the surface by random movement, and subsequently the cells generate an apical/basal polarity that prevents reentry. Thus, the ability to generate epithelial polarity, rather than adhesive affinity, determines the surface positioning of the primitive endoderm cells. genesis 47:579–589, 2009.


PLOS ONE | 2010

Nuclear Entry of Activated MAPK Is Restricted in Primary Ovarian and Mammary Epithelial Cells

Elizabeth R. Smith; Kathy Q. Cai; Jennifer L. Smedberg; Melina M. Ribeiro; Malgorzata E. Rula; Carolyn M. Slater; Andrew K. Godwin; Xiang Xi Xu

Background The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription. Principal Findings Here, however, we observe that in primary cultures of breast and ovarian epithelial cells, phosphorylation and activation of ERK1/2 are disassociated from nuclear translocalization and transcription of downstream targets, such as c-Fos, suggesting that nuclear translocation is limited in primary cells. Accordingly, in import assays in vitro, primary cells showed a lower import activity for ERK1/2 than cancer cells, in which activated MAPK readily translocated into the nucleus and activated c-Fos expression. Primary cells express lower levels of nuclear pore complex proteins and the nuclear transport factors, importin B1 and importin 7, which may explain the limiting ERK1/2 import found in primary cells. Additionally, reduction in expression of nucleoporin 153 by siRNA targeting reduced ERK1/2 nuclear activity in cancer cells. Conclusion ERK1/2 activation is dissociated from nuclear entry, which is a rate limiting step in primary cells and in vivo, and the restriction of nuclear entry is disrupted in transformed cells by the increased expression of nuclear pores and/or nuclear transport factors.


PLOS Pathogens | 2013

DDX24 Negatively Regulates Cytosolic RNA-Mediated Innate Immune Signaling

Zhe Ma; Robert Moore; Xiang Xi Xu; Glen N. Barber

RIG-I-Like Receptors (RLRs) sense cytosolic viral RNA to transiently activate type I IFN production. Here, we report that a type I IFN inducible DExD/H helicase, DDX24, exerts a negative-regulatory effect on RLR function. Expression of DDX24 specifically suppressed RLR activity, while DDX24 loss, which caused embryonic lethality, augmented cytosolic RNA-mediated innate signaling and facilitated RNA virus replication. DDX24 preferentially bound to RNA rather than DNA species and influenced signaling by associating with adaptor proteins FADD and RIP1. These events preferentially impeded IRF7 activity, an essential transcription factor for type I IFN production. Our data provide a new function for DDX24 and help explain innate immune gene regulation, mechanisms that may additionally provide insight into the causes of inflammatory disease.


Developmental Dynamics | 2011

Ectopic expression of GATA6 bypasses requirement for Grb2 in primitive endoderm formation

Ying Wang; Jennifer L. Smedberg; Kathy Q. Cai; D. Callinice Capo-Chichi; Xiang Xi Xu

Gene knockouts in mice have showed that Grb2 and GATA6 are essential for the formation of primitive endoderm in blastocysts. Here, we confirmed that implanted Grb2‐null blastocysts lack primitive or extraembryonic endoderm cells either at E4.5 or E5.5 stages. We analyzed the relationship between Grb2 and GATA6 in the differentiation of embryonic stem (ES) cells to primitive endoderm in embryoid body models. Upon transfection with GATA6 expression vector, Grb2‐null ES cells underwent endoderm differentiation as indicated by the expression of the extraembryonic endoderm markers Dab2 and GATA4. Transfection of GATA4 expression vector also had the same differentiation potency. When GATA6‐ or GATA4‐transfected Grb2‐null ES cells were allowed to aggregate, fragments of an endoderm layer formed on the surface of the spheroids. The results suggest that GATA6 is downstream of Grb2 in the inductive signaling pathway and the expression of GATA6 is sufficient to compensate for the defects caused by Grb2 deficiency in the development of the primitive and extraembryonic endoderm. Developmental Dynamics 240:566–576, 2011.

Collaboration


Dive into the Xiang Xi Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathy Q. Cai

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge