Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang Yang Chen is active.

Publication


Featured researches published by Xiang Yang Chen.


The Journal of Neuroscience | 2006

Operant Conditioning of H-Reflex Can Correct a Locomotor Abnormality after Spinal Cord Injury in Rats

Yi Chen; Xiang Yang Chen; Lyn B. Jakeman; Lu Chen; Bradford T. Stokes; Jonathan R. Wolpaw

This study asked whether operant conditioning of the H-reflex can modify locomotion in spinal cord-injured rats. Midthoracic transection of the right lateral column of the spinal cord produced a persistent asymmetry in the muscle activity underlying treadmill locomotion. The rats were then either exposed or not exposed to an H-reflex up-conditioning protocol that greatly increased right soleus motoneuron response to primary afferent input, and locomotion was reevaluated. H-reflex up-conditioning increased the right soleus burst and corrected the locomotor asymmetry. In contrast, the locomotor asymmetry persisted in the control rats. These results suggest that appropriately selected reflex conditioning protocols might improve function in people with partial spinal cord injuries. Such protocols might be especially useful when significant regeneration becomes possible and precise methods for reeducating the regenerated spinal cord neurons and synapses are needed for restoring effective function.


The Journal of Neuroscience | 2009

Acquisition of a Simple Motor Skill: Task-Dependent Adaptation Plus Long-Term Change in the Human Soleus H-Reflex

Aiko K. Thompson; Xiang Yang Chen; Jonathan R. Wolpaw

Activity-dependent plasticity occurs throughout the CNS. However, investigations of skill acquisition usually focus on cortex. To expand the focus, we analyzed in humans the development of operantly conditioned H-reflex change, a simple motor skill that develops gradually and involves plasticity in both the brain and the spinal cord. Each person completed 6 baseline and 24 conditioning sessions over 10 weeks. In each conditioning session, the soleus H-reflex was measured while the subject was or was not asked to increase (HRup subjects) or decrease (HRdown subjects) it. When the subject was asked to change H-reflex size, immediate visual feedback indicated whether a size criterion had been satisfied. Over the 24 conditioning sessions, H-reflex size gradually increased in six of eight HRup subjects and decreased in eight of nine HRdown subjects, resulting in final sizes of 140 ± 12 and 69 ± 6% of baseline size, respectively. The final H-reflex change was the sum of within-session (i.e., task-dependent) adaptation and across-session (i.e., long-term) change. Task-dependent adaptation appeared within four to six sessions and persisted thereafter, averaging +13% in HRup subjects and −15% in HRdown subjects. In contrast, long-term change began after 10 sessions and increased gradually thereafter, reaching +27% in HRup subjects and −16% in HRdown subjects. Thus, the acquisition of H-reflex conditioning consists of two phenomena, task-dependent adaptation and long-term change, that together constitute the new motor skill. In combination with previous data, this new finding further elucidates the interaction of plasticity in brain and spinal cord that underlies the acquisition and maintenance of motor skills.


Experimental Brain Research | 2002

Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats

Xiang Yang Chen; Jonathan S. Carp; Lu Chen; Jonathan R. Wolpaw

Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, in freely moving rats is a relatively simple model for studying long-term supraspinal control over spinal cord function. Motivated by food reward, rats can gradually increase (i.e., up-condition) or decrease (i.e., down-condition) the soleus H-reflex. Earlier work showed that corticospinal tract transection prevents acquisition and maintenance of H-reflex down-conditioning while transection of other major spinal cord tracts does not. This study explores the effects on acquisition of up-conditioning of the right soleus H-reflex of mid-thoracic transection of: the right lateral column (LC, five rats) (containing the rubrospinal, vestibulospinal, and reticulospinal tracts); the entire dorsal column (DC, six rats) [containing the main corticospinal tract (CST) and the dorsal ascending tract (DA)]; the CST alone (five rats); or the DA alone (seven rats). After initial (i.e., control) H-reflex amplitude was determined, the rat was exposed for 50 days to the up-conditioning mode in which reward was given when the H-reflex was above a criterion value. H-reflex amplitude at the end of up-conditioning was compared to initial H-reflex amplitude. An increase ≥20% was defined as successful up-conditioning. In intact rats, H-reflex amplitude at the end of up-conditioning averaged 164% (±10%, SE), and 81% were successful. In the present study, LC and DA rats were similar to intact rats in final H-reflex amplitude and percent successful. In contrast, results for DC and CST rats were significantly different from those of intact rats. In the six DC rats, final H-reflex amplitude averaged 105% (±3)% of control and none was successful; and in the five CST rats, final H-reflex amplitude averaged 94% (±3)% and none was successful. The results indicate that the main CST, located in the dorsal column, is essential for H-reflex up-conditioning as it is for down-conditioning, while the dorsal column ascending tract and the ipsilateral lateral column (containing the main rubrospinal, vestibulospinal, and reticulospinal tracts) do not appear to be essential.


The Journal of Neuroscience | 2005

The Interaction of a New Motor Skill and an Old One: H-Reflex Conditioning and Locomotion in Rats

Yi Chen; Xiang Yang Chen; Lyn B. Jakeman; Bradford T. Stokes; Jonathan R. Wolpaw

New and old motor skills can interfere with each other or interact in other ways. Because each skill entails a distributed pattern of activity-dependent plasticity, investigation of their interactions is facilitated by simple models. In a well characterized model of simple learning, rats and monkeys gradually change the size of the H-reflex, the electrical analog of the spinal stretch reflex. This study evaluates in normal rats the interactions of this new skill of H-reflex conditioning with the old well established skill of overground locomotion. In rats in which the soleus H-reflex elicited in the conditioning protocol (i.e., the conditioning H-reflex) had been decreased by down-conditioning, the H-reflexes elicited during the stance and swing phases of locomotion (i.e., the locomotor H-reflexes) were also smaller. Similarly, in rats in which the conditioning H-reflex had been increased by up-conditioning, the locomotor H-reflexes were also larger. Soleus H-reflex conditioning did not affect the duration, length, or right/left symmetry of the step cycle. However, the conditioned change in the stance H-reflex was positively correlated with change in the amplitude of the soleus locomotor burst, and the correlation was consistent with current estimates of the contribution of primary afferent input to the burst. Although H-reflex conditioning and locomotion did not interfere with each other, H-reflex conditioning did affect how locomotion was produced: it changed soleus burst amplitude and may have induced compensatory changes in the activity of other muscles. These results illustrate and clarify the subtlety and complexity of skill interactions. They also suggest that H-reflex conditioning might be used to improve the abnormal locomotion produced by spinal cord injury or other disorders of supraspinal control.


European Journal of Neuroscience | 2006

Motor learning changes GABAergic terminals on spinal motoneurons in normal rats

Yu Wang; Shreejith Pillai; Jonathan R. Wolpaw; Xiang Yang Chen

The role of spinal cord plasticity in motor learning is largely unknown. This study explored the effects of H‐reflex operant conditioning, a simple model of motor learning, on GABAergic input to spinal motoneurons in rats. Soleus motoneurons were labeled by retrograde transport of a fluorescent tracer and GABAergic terminals on them were identified by glutamic acid decarboxylase (GAD)67 immunoreactivity. Three groups were studied: (i) rats in which down‐conditioning had reduced the H‐reflex (successful HRdown rats); (ii) rats in which down‐conditioning had not reduced the H‐reflex (unsuccessful HRdown rats) and (iii) unconditioned (naive) rats. The number, size and GAD density of GABAergic terminals, and their coverage of the motoneuron, were significantly greater in successful HRdown rats than in unsuccessful HRdown or naive rats. It is likely that these differences are due to modifications in terminals from spinal interneurons in lamina VI–VII and that the increased terminal number, size, GAD density and coverage in successful HRdown rats reflect and convey a corticospinal tract influence that changes motoneuron firing threshold and thereby decreases the H‐reflex. GABAergic terminals in spinal cord change after spinal cord transection. The present results demonstrate that such spinal cord plasticity also occurs in intact rats in the course of motor learning and suggest that this plasticity contributes to skill acquisition.


Journal of Neurotrauma | 2001

Short-Term and Medium-Term Effects of Spinal Cord Tract Transections on Soleus H-Reflex in Freely Moving Rats

Xiang Yang Chen; Kuo Ching Feng-Chen; Lu Chen; Dayna M. Stark; Jonathan R. Wolpaw

Spinal cord function is normally influenced by descending activity from supraspinal structures. When injury removes or distorts this influence, function changes and spasticity and other disabling problems eventually appear. Understanding how descending activity affects spinal cord function could lead to new means for inducing, guiding, and assessing recovery after injury. In this study, we investigated the short-term and medium-term effects of spinal cord bilateral dorsal column (DC), unilateral (ipsilateral) lateral column (LC), bilateral dorsal column ascending tract (DA), or bilateral dorsal column corticospinal tract (CST) transection at vertebral level T8-T9 on the soleus H-reflex in freely moving rats. Data were collected continuously for 10-20 days before and for 20-155 days after bilateral DC (13 rats), DA (10 rats), CST (eight rats), or ipsilateral LC (seven rats) transection. Histological examination showed that transections were 98(+/- 3 SD)% complete for DC rats, 80(+/- 20)% complete for LC rats, 91(+/- 13 SD)% complete for DA rats, and 95(+/-13)% complete for CST rats. LC, CST, and DA transections produced an immediate (i.e., first-day) increase in H-reflex amplitude. LC transection also produced a small decrease in background activity in the first few posttransection days. Other than this small decrease, none of the transections produced evidence for the phenomenon of spinal shock. For all transections, all measures returned to or neared pretransection values within 2 weeks. DA and LC transections were associated with modest increase in H-reflex amplitude 1-3 months after transection. These medium-term effects must be taken into account when assessing transection effects on operant conditioning of the H-reflex. At the same time, the results are consistent with other evidence that, while H-reflex rate dependence and H-reflex operant conditioning are sensitive measures of spinal cord injury, the H-reflex itself is not.


Neuroscience Letters | 2001

Time course of H-reflex conditioning in the rat

Xiang Yang Chen; Lu Chen; Jonathan R. Wolpaw

This study sought to define the course of operantly conditioned change in the rat soleus H-reflex and to determine whether, like H-reflex conditioning and spinal stretch reflex conditioning in the monkey, it develops in distinct phases. Data from 33 rats in which the right soleus H-reflex was trained up (i.e. HRup mode) and 38 in which it was trained down (i.e. HRdown mode) were averaged to define the courses of H-reflex increase and decrease. In HRup rats, the H-reflex showed a large phase I increase within the first 2 days followed by gradual phase II increase that continued for weeks. In HRdown rats, the H-reflex appeared to show a small phase I decrease and then showed a gradual phase II decrease over weeks. In combination with other recent work, the data suggest that H-reflex conditioning begins with a rapid mode-appropriate alteration in corticospinal tract influence over the spinal arc of the H-reflex, which causes phase I change, and that the continuation of this altered influence induces gradual spinal cord plasticity that is responsible for phase II change. The results further establish the similarity of H-reflex conditioning in primates and rats. Thus, they encourage efforts to produce a single coherent model of the phenomenon based on data from the two species and indicate the potential clinical relevance of the rat data.


Brain Research | 1994

Circadian rhythm in rat H-reflex.

Xiang Yang Chen; Jonathan R. Wolpaw

We measured soleus H-reflex in the Sprague-Dawley rat as a function of time of day. H-reflex amplitude displayed a marked diurnal variation, even though background EMG and M-response amplitude were stable through the day. The H-reflex was largest in the late morning and smallest around midnight. Thus, its rhythm was opposite in phase to the circadian rhythm found in the primate H-reflex. This rhythm is a potentially confounding factor in studies of motor function. Furthermore, its existence implies that the CNS activity underlying a specific motor performance varies with time of day.


Experimental Brain Research | 1996

Reversal of H-reflex operant conditioning in the rat

Xiang Yang Chen; Jonathan R. Wolpaw

In response to an operant conditioning task, rats can gradually increase or decrease soleus H-reflex amplitude without change in background electromyographic activity or M response amplitude. Both increase (under the HRup mode) and decrease (under the HRdown mode) develop over weeks. The present study investigated reversal of conditioned H-reflex change. Following collection of control data, rats were exposed to one mode (HRup or HRdown) for 50 days, and then exposed to the opposite mode for up to 72 days. Rats responded to each mode exposure with gradual, mode-appropriate change in H-reflex amplitude. This finding is consistent with other evidence that H-reflex conditioning depends on spinal cord plasticity. The effects of exposure to the HRup (or HRdown) mode were not affected by whether exposure followed previous exposure to the HRdown (or HRup) mode. In accord with recent studies suggesting that HRup and HRdown conditioning have different spinal mechanisms, these results suggest that reversal of H-reflex change is due primarily to the superimposition of additional plasticity rather than to decay of the plasticity responsible for the initial change.


The Journal of Neuroscience | 2011

Operant Conditioning of Rat Soleus H-Reflex Oppositely Affects Another H-Reflex and Changes Locomotor Kinematics

Yi Chen; Lu Chen; Yu Wang; Jonathan R. Wolpaw; Xiang Yang Chen

H-reflex conditioning is a model for studying the plasticity associated with a new motor skill. We are exploring its effects on other reflexes and on locomotion. Rats were implanted with EMG electrodes in both solei (SOLR and SOLL) and right quadriceps (QDR), and stimulating cuffs on both posterior tibial (PT) nerves and right posterior femoral nerve. When SOLR EMG remained in a defined range, PTR stimulation just above M-response threshold elicited the SOLR H-reflex. Analogous procedures elicited the QDR and SOLL H-reflexes. After a control period, each rat was exposed for 50 d to a protocol that rewarded SOLR H-reflexes that were above (HRup rats) or below (HRdown rats) a criterion. HRup conditioning increased the SOLR H-reflex to 214 ± 37% (mean ± SEM) of control (p = 0.02) and decreased the QDR H-reflex to 71 ± 26% (p = 0.06). HRdown conditioning decreased the SOLR H-reflex to 69 ± 2% (p < 0.001) and increased the QDR H-reflex to 121 ± 7% (p = 0.02). These changes remained during locomotion. The SOLL H-reflex did not change. During the stance phase of locomotion, ankle plantarflexion increased in HRup rats and decreased in HRdown rats, hip extension did the opposite, and hip height did not change. The plasticity that changes the QDR H-reflex and locomotor kinematics may be inevitable (i.e., reactive) due to the ubiquity of activity-dependent CNS plasticity, and/or necessary (i.e., compensatory) to preserve other behaviors (e.g., locomotion) that would otherwise be disturbed by the change in the SOLR H-reflex pathway. The changes in joint angles, coupled with the preservation of hip height, suggest that compensatory plasticity did occur.

Collaboration


Dive into the Xiang Yang Chen's collaboration.

Top Co-Authors

Avatar

Jonathan R. Wolpaw

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Lu Chen

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan S. Carp

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Ann M. Tennissen

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Aiko K. Thompson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shreejith Pillai

New York State Department of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge