Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang Yong Oong is active.

Publication


Featured researches published by Xiang Yong Oong.


PLOS ONE | 2015

Epidemiological and Evolutionary Dynamics of Influenza B Viruses in Malaysia, 2012-2014.

Xiang Yong Oong; Kim Tien Ng; Tommy Tsan-Yuk Lam; Yong-Kek Pang; Kok-Gan Chan; Nik Sherina Hanafi; Adeeba Kamarulzaman; Kok Keng Tee

Epidemiological and evolutionary dynamics of influenza B Victoria and Yamagata lineages remained poorly understood in the tropical Southeast Asia region, despite causing seasonal outbreaks worldwide. From 2012–2014, nasopharyngeal swab samples collected from outpatients experiencing acute upper respiratory tract infection symptoms in Kuala Lumpur, Malaysia, were screened for influenza viruses using a multiplex RT-PCR assay. Among 2,010/3,935 (51.1%) patients infected with at least one respiratory virus, 287 (14.3%) and 183 (9.1%) samples were tested positive for influenza A and B viruses, respectively. Influenza-positive cases correlate significantly with meteorological factors—total amount of rainfall, relative humidity, number of rain days, ground temperature and particulate matter (PM10). Phylogenetic reconstruction of haemagglutinin (HA) gene from 168 influenza B viruses grouped them into Yamagata Clade 3 (65, 38.7%), Yamagata Clade 2 (48, 28.6%) and Victoria Clade 1 (55, 32.7%). With neuraminidase (NA) phylogeny, 30 intra-clade (29 within Yamagata Clade 3, 1 within Victoria Clade 1) and 1 inter-clade (Yamagata Clade 2-HA/Yamagata Clade 3-NA) reassortants were identified. Study of virus temporal dynamics revealed a lineage shift from Victoria to Yamagata (2012–2013), and a clade shift from Yamagata Clade 2 to Clade 3 (2013–2014). Yamagata Clade 3 predominating in 2014 consisted of intra-clade reassortants that were closely related to a recent WHO vaccine candidate strain (B/Phuket/3073/2013), with the reassortment event occurred approximately 2 years ago based on Bayesian molecular clock estimation. Malaysian Victoria Clade 1 viruses carried H274Y substitution in the active site of neuraminidase, which confers resistance to oseltamivir. Statistical analyses on clinical and demographic data showed Yamagata-infected patients were older and more likely to experience headache while Victoria-infected patients were more likely to experience nasal congestion and sore throat. This study describes the evolution of influenza B viruses in Malaysia and highlights the importance of continuous surveillance for better vaccination policy in this region.


Scientific Reports | 2016

Genetic diversity, seasonality and transmission network of human metapneumovirus: identification of a unique sub-lineage of the fusion and attachment genes.

Wei Zhen Chow; Yoke Fun Chan; Xiang Yong Oong; Liang Jie Ng; Siti Sarah Nor’E; Kim Tien Ng; Kok-Gan Chan; Nik Sherina Hanafi; Yong-Kek Pang; Adeeba Kamarulzaman; Kok Keng Tee

Human metapneumovirus (HMPV) is an important viral respiratory pathogen worldwide. Current knowledge regarding the genetic diversity, seasonality and transmission dynamics of HMPV among adults and children living in tropical climate remains limited. HMPV prevailed at 2.2% (n = 86/3,935) among individuals presented with acute respiratory tract infections in Kuala Lumpur, Malaysia between 2012 and 2014. Seasonal peaks were observed during the northeast monsoon season (November–April) and correlated with higher relative humidity and number of rainy days (P < 0.05). Phylogenetic analysis of the fusion and attachment genes identified the co-circulation of three known HMPV sub-lineages, A2b and B1 (30.2% each, 26/86) and B2 (20.9%, 18/86), with genotype shift from sub-lineage B1 to A2b observed in 2013. Interestingly, a previously unrecognized sub-lineage of A2 was identified in 18.6% (16/86) of the population. Using a custom script for network construction based on the TN93 pairwise genetic distance, we identified up to nine HMPV transmission clusters circulating as multiple sub-epidemics. Although no apparent major outbreak was observed, the increased frequency of transmission clusters (dyads) during seasonal peaks suggests the potential roles of transmission clusters in driving the spread of HMPV. Our findings provide essential information for therapeutic research, prevention strategies, and disease outbreak monitoring of HMPV.


Emerging microbes & infections | 2015

Outbreaks of enterovirus D68 in Malaysia: genetic relatedness to the recent US outbreak strains.

Kim Tien Ng; Xiang Yong Oong; Yong-Kek Pang; Nik Sherina Hanafi; Adeeba Kamarulzaman; Kok Keng Tee

Outbreaks of enterovirus D68 in Malaysia: genetic relatedness to the recent US outbreak strains


PLOS ONE | 2017

Whole-Genome Phylogenetic Analysis of Influenza B/Phuket/3073/2013-Like Viruses and Unique Reassortants Detected in Malaysia between 2012 and 2014

Xiang Yong Oong; Kim Tien Ng; Joon Ling Tan; Kok-Gan Chan; Adeeba Kamarulzaman; Yoke Fun Chan; I-Ching Sam; Kok Keng Tee

Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012–2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade “Vic-1C”, and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design.


Emerging microbes & infections | 2017

Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: phylogenetic, spatiotemporal and transmission network analyses.

Xiang Yong Oong; Kim Tien Ng; Yutaka Takebe; Liang Jie Ng; Kok-Gan Chan; Jack Bee Chook; Adeeba Kamarulzaman; Kok Keng Tee

Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification.


Clinical Infectious Diseases | 2018

Viral Load and Sequence Analysis Reveal the Symptom Severity, Diversity, and Transmission Clusters of Rhinovirus Infections

Kim Tien Ng; Xiang Yong Oong; Sin How Lim; Jack Bee Chook; Yutaka Takebe; Yoke Fun Chan; Kok-Gan Chan; Nik Sherina Hanafi; Yong-Kek Pang; Adeeba Kamarulzaman; Kok Keng Tee

Background Rhinovirus (RV) is one of the main viral etiologic agents of acute respiratory illnesses. Despite the heightened disease burden caused by RV, the viral factors that increase the severity of RV infection, the transmission pattern, and seasonality of RV infections remain unclear. Methods An observational study was conducted among 3935 patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014. Results The VP4/VP2 gene was genotyped from all 976 RV-positive specimens, where the predominance of RV-A (49%) was observed, followed by RV-C (38%) and RV-B (13%). A significant regression in median nasopharyngeal viral load (VL) (P < .001) was observed, from 883 viral copies/µL at 1-2 days after symptom onset to 312 viral copies/µL at 3-4 days and 158 viral copies/µL at 5-7 days, before declining to 35 viral copies/µL at ≥8 days. In comparison with RV-A (median VL, 217 copies/µL) and RV-B (median VL, 275 copies/µL), RV-C-infected subjects produced higher VL (505 copies/µL; P < .001). Importantly, higher RV VL (median, 348 copies/µL) was associated with more severe respiratory symptoms (Total Symptom Severity Score ≥17, P = .017). A total of 83 phylogenetic-based transmission clusters were identified in the population. It was observed that the relative humidity was the strongest environmental predictor of RV seasonality in the tropical climate. Conclusions Our findings underline the role of VL in increasing disease severity attributed to RV-C infection, and unravel the factors that fuel the population transmission dynamics of RV.


Scientific Reports | 2016

Performance of a Taqman Assay for Improved Detection and Quantification of Human Rhinovirus Viral Load.

Kim Tien Ng; Jack Bee Chook; Xiang Yong Oong; Yoke Fun Chan; Kok-Gan Chan; Nik Sherina Hanafi; Yong-Kek Pang; Adeeba Kamarulzaman; Kok Keng Tee

Human rhinovirus (HRV) is the major aetiology of respiratory tract infections. HRV viral load assays are available but limitations that affect accurate quantification exist. We developed a one-step Taqman assay using oligonucleotides designed based on a comprehensive list of global HRV sequences. The new oligonucleotides targeting the 5′-UTR region showed high PCR efficiency (E = 99.6%, R2 = 0.996), with quantifiable viral load as low as 2 viral copies/μl. Assay evaluation using an External Quality Assessment (EQA) panel yielded a detection rate of 90%. When tested on 315 human enterovirus-positive specimens comprising at least 84 genetically distinct HRV types/serotypes (determined by the VP4/VP2 gene phylogenetic analysis), the assay detected all HRV species and types, as well as other non-polio enteroviruses. A commercial quantification kit, which failed to detect any of the EQA specimens, produced a detection rate of 13.3% (42/315) among the clinical specimens. Using the improved assay, we showed that HRV sheds in the upper respiratory tract for more than a week following acute infection. We also showed that HRV-C had a significantly higher viral load at 2–7 days after the onset of symptoms (p = 0.001). The availability of such assay is important to facilitate disease management, antiviral development, and infection control.


Archive | 2016

Additional file 5: Figure S5. of Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia

Maryam Nabiel Al-Khannaq; Kim Tien Ng; Xiang Yong Oong; Yong Pang; Yutaka Takebe; Jack Bee Chook; Nik Hanafi; Adeeba bte Kamarulzaman; Kok Tee

Phylogenetic analysis of the HCoV-OC43 1a (nsp3) and RdRp gene. Trees were reconstructed using neighbor-joining method. Bootstrap values were calculated from 1,000 trees. Bootstrap values of greater than 70 % were indicated on the branch nodes. The scale bar of individual tree was indicated in substitutions per site, using Kimura 2-parameter model in MEGA (version 5.1) to estimate pair-wise evolutionary distance. (PDF 119 kb)


American Journal of Tropical Medicine and Hygiene | 2016

Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia.

Maryam Nabiel Al-Khannaq; Kim Tien Ng; Xiang Yong Oong; Yong-Kek Pang; Yutaka Takebe; Jack Bee Chook; Nik Sherina Hanafi; Adeeba Kamarulzaman; Kok Keng Tee

The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respiratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population history, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia, between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus; HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8% of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clustered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was dated to 1955, before it diverged into groups 1-4 between the 1970s and 1990s. The study described the seasonality, molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region.


Virology Journal | 2016

Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia

Maryam Nabiel Al-Khannaq; Kim Tien Ng; Xiang Yong Oong; Yong-Kek Pang; Yutaka Takebe; Jack Bee Chook; Nik Sherina Hanafi; Adeeba Kamarulzaman; Kok Keng Tee

Collaboration


Dive into the Xiang Yong Oong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutaka Takebe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge