Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangbao Meng is active.

Publication


Featured researches published by Xiangbao Meng.


Toxicology and Applied Pharmacology | 2012

Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

Gui-bo Sun; Xiao Sun; Min Wang; Jing-xue Ye; Jian-yong Si; Huibo Xu; Xiangbao Meng; Meng Qin; Jing Sun; Hongwei Wang; Xiaobo Sun

Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague-Dawley rats (200-220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H(2)O(2))-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H(2)O(2)-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction.


Toxicology and Applied Pharmacology | 2013

Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE-/- mice.

Gui-bo Sun; Meng Qin; Jing-xue Ye; Ruile Pan; Xiangbao Meng; Min Wang; Yun Luo; Zongyang Li; Hongwei Wang; Xiaobo Sun

Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE-/-mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H2O2)-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H2O2-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H2O2-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury.


PLOS ONE | 2013

Isorhamnetin Protects against Doxorubicin-Induced Cardiotoxicity In Vivo and In Vitro

Jing Sun; Guibo Sun; Xiangbao Meng; Hongwei Wang; Yun Luo; Meng Qin; Bo Ma; Min Wang; Dayong Cai; Peng Guo; Xiaobo Sun

Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. Isorhamnetin is a nature antioxidant with obvious cardiac protective effect. The aim of this study is going to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity. Daily pretreatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. A further mechanism study indicated that isorhamnetin pretreatment can counteract Dox-induced oxidative stress and suppress the activation of mitochondrion apoptotic pathway and mitogen-activated protein kinase pathway. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox.


Vascular Pharmacology | 2015

Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways.

Meng Qin; Yun Luo; Xiangbao Meng; Min Wang; Hongwei Wang; Shiyu Song; Jing-xue Ye; Ruile Pan; Fan Yao; Ping Wu; Guibo Sun; Xiaobo Sun

Blood vessel endothelial dysfunction induced by oxidized low-density lipoprotein (ox-LDL) has been implicated in the pathogenesis of atherosclerosis and vasculopathy. The ox-LDL-elicited reactive oxygen species (ROS) release has been assumed to serve a critical function in endothelial damage. Myricitrin (from Myrica cerifera) is a natural antioxidant that has strong anti-oxidative, anti-inflammatory, and anti-nociceptive activities. However, the protective effect of myricitrin on ROS-induced endothelial cell injury and its related molecular mechanisms have never been investigated. This study demonstrates that myricitrin can inhibit ox-LDL-induced endothelial apoptosis and prevent plaque formation at an early stage in an atherosclerotic mouse model. The administration of myricitrin in vivo decreases the thickness of the vascular wall in the aortic arch of ApoE-/- mice. In vitro study shows that ox-LDL-induced human umbilical vein endothelial cell apoptosis can be reduced upon receiving myricitrin pre-treatment. Treatment with myricitrin significantly attenuated ox-LDL-induced endothelial cell apoptosis by inhibiting LOX-1 expression and by increasing the activation of the STAT3 and PI3K/Akt/eNOS signaling pathways. At the same time, our result demonstrates that myricitrin treatment optimizes the balance of pro/anti-apoptosis proteins, including Bax, Bad, XIAP, cIAP-2, and survivin. Our study suggests that myricitrin treatment can effectively protect cells from ox-LDL-induced endothelial cell apoptosis, which results in reduced atherosclerotic plaque formation. This result indicates that myricitrin can be used as a drug candidate for the treatment of cardiovascular diseases.


Toxicology Letters | 2013

Cardioprotective effect of salvianolic acid B against arsenic trioxide-induced injury in cardiac H9c2 cells via the PI3K/Akt signal pathway.

Min Wang; Gui-bo Sun; Xiao Sun; Hongwei Wang; Xiangbao Meng; Meng Qin; Jing Sun; Yun Luo; Xiaobo Sun

The clinical use of arsenic trioxide (ATO), a potent anti-neoplastic agent, is often limited because of its severe cardiotoxicity. Salviae miltiorrhiza is widely used for the treatment of cardiovascular diseases. One of the most abundant ingredients of S. miltiorrhiza is salvianolic acid B (Sal B). The present study was designed to evaluate whether Sal B protects against ATO-induced cardiac cell injury in vitro. With MTT cell viability assay, LDH release, ROS generation, caspase-3 activity assay and Hoechst 33342/PI staining, we found that Sal B pretreatment provided significantly protection against ATO-induced cell death. The effect was correlated with the activation of the PI3K/Akt signal pathway. Conversely, blocking Akt activation with the PI3K inhibitor LY294002 effectively suppressed the protective effect of Sal B against ATO-induced cell apoptosis. In addition, the PI3K inhibitor partially blocked the effects of Sal B on the upregulation of Bcl-2 and Bcl-xl protein expression, and downregulation of Bax protein expression. Collectively, the results showed that Sal B decreased the apoptosis and necrosis of H9c2 cardiomyocytes caused by ATO treatment, and PI3K played a crucial role in enhancing cell survival during this process. These observations indicate that Sal B has the potential to exert cardioprotective effects against ATO toxicity.


Evidence-based Complementary and Alternative Medicine | 2013

Ginsenoside RK3 Prevents Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes via AKT and MAPK Pathway

Jing Sun; Guibo Sun; Xiangbao Meng; Hongwei Wang; Min Wang; Meng Qin; Bo Ma; Yun Luo; Yingli Yu; Rongchang Chen; Qidi Ai; Xiaobo Sun

Reperfusion therapy is widely utilized for acute myocardial infarction (AMI), but further injury induced by rapidly initiating reperfusion of the heart is often encountered in clinical practice. Ginsenoside RK3 (RK3) is reportedly present in the processed Radix notoginseng that is often used as a major ingredient of the compound preparation for ischemic heart diseases. This study aimed to investigate the possible protective effect of RK3 against hypoxia-reoxygenation (H/R) induced H9c2 cardiomyocytes damage and its underlying mechanisms. Our results showed that RK3 pretreatment caused increased cell viability and decreased levels of LDH leakage compared with the H/R group. Moreover, RK3 pretreatment inhibited cell apoptosis, as evidenced by decreased caspase-3 activity, TUNEL-positive cells, and Bax expression, as well as increased Bcl-2 level. Further mechanism investigation revealed that RK3 prevented H9c2 cardiomyocytes injury and apoptosis induced by H/R via AKT/Nrf-2/HO-1 and MAPK pathways. These observations indicate that RK3 has the potential to exert cardioprotective effects against H/R injury, which might be of great importance to clinical efficacy for AMI treatment.


Toxicology and Applied Pharmacology | 2014

Attenuation of Aβ25-35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways.

Xiangbao Meng; Min Wang; Guibo Sun; Jing-xue Ye; Yanhui Zhou; Xi Dong; Tingting Wang; Shan Lu; Xiaobo Sun

Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimers disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ25-35-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ25-35 (20μM) treatment for 24h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ25-35 treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ25-35 treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10μM) for 12h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ25-35-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ25-35-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or gypenosides.


Free Radical Research | 2014

Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: A novel mechanism of Nrf2/ARE signaling activation

Xiangbao Meng; Gui-bo Sun; J. Ye; Huibi Xu; Hongwei Wang; Xiaobo Sun

Abstract Notoginsenoside R1 (NGR1), a novel phytoestrogen isolated from Panax notoginseng, has antioxidant and anti-apoptotic properties. Oxidative stress plays a pivotal role in neurodegenerative diseases. To mimic oxidative stress in neurons and explore the neuroprotection of NGR1, H2O2-induced neurotoxicity in NGF-induced differentiation of PC12 cells was used. In this study, NGR1 preconditioning provided neuroprotective effects via suppressing H2O2-induced the intracellular ROS accumulation, the increase in the product of lipid peroxidation (MDA), protein oxidation (protein carbonyl), and DNA fragmentation (8-OHdG), and mitochondrial membrane depolarization as well as caspase-3 activation. Moreover, NGR1 treatment alone potently increased the nuclear translocation of Nrf2, augmented ARE enhancer activity, and upregulated the expression and activity of phase II antioxidant enzymes including HO-1, NQO-1, and γ-GCSc. NGR1 could also increase the ERE activity and activate Akt and ERK1/2 pathways. NGR1-mediated activation of Nrf2/ARE signaling and neuroprotection were abolished by genetic silencing of Nrf2 using siRNA or the pharmacological blockade of estrogen receptors using ICI-182780, and partially inhibited by Akt siRNA or ERK siRNA transfection. In addition, the phosphorylation of ERK1/2 mediated by NGR1 was markedly inhibited in PC12 cells transfected with Akt siRNA. On the contrary, ERK1/2 siRNA transfection hardly had any effect on the phosphorylation of Akt mediated by NGR1. NGR1-mediated activation of Akt and ERK1/2 pathways was blocked by ICI-182780. In conclusion, NGR1 provided neuroprotection via inducing an estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways, subsequently activating Nrf2/ARE signaling and thereby up-regulating phase II antioxidant enzymes.


Free Radical Research | 2014

Suppression of NADPH oxidase- and mitochondrion-derived superoxide by Notoginsenoside R1 protects against cerebral ischemia–reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways

Xiangbao Meng; Min Wang; X. Wang; Gui-bo Sun; J. Ye; Huibi Xu; Xiaobo Sun

Abstract Notoginsenoside R1 (NGR1) is a novel phytoestrogen that is isolated from Panax notoginseng. We have recently found that NGR1 showed neuroprotection in vitro against oxidative stress through estrogen receptor (ER)-dependent activation of Akt/Nrf2 pathways. However, whether NGR1 has neuroprotective effect against cerebral ischemia–reperfusion (I/R) injury in vivo is unknown. In this study, we used in vivo and in vitro models of cerebral I/R injury that demonstrate middle cerebral artery occlusion and reperfusion in rats, as well as oxygen–glucose deprivation followed by reoxygenation (OGD/R) in primary cortical neurons. These models were used to evaluate NGR1 neuroprotection. Three-day pretreatment with NGR1 (20 mg/kg; i.p.) significantly improved neurologic outcomes and reduced cerebral infarct volume. Pretreatment of primary cortical neurons with NGR1 (25 μM) for 24 h prevented apoptosis and oxidative stress induced by OGD/R. NGR1 inhibited apoptosis by inhibiting mitochondrial membrane potential disruption, caspase-3 activation, and DNA fragmentation. NGR1 prevented oxidative stress by suppressing NADPH oxidase- and mitochondrion-derived superoxide and inhibiting production of malondialdehyde, protein carbonyl, and 8-hydroxydeoxyguanosine in vivo and in vitro. NGR1 induced ER-dependent activation of Akt/Nrf2 pathways by increasing ERα, ERβ, phospho-Akt, phospho-GSK3β, nuclear Nrf2, and HO-1 expression in vivo and in vitro. Pretreatment with ICI-182780, LY294002, or Snpp abolished NGR1-mediated neuroprotection against oxidative stress and apoptosis in vitro. In conclusion, NGR1 showed neuroprotection against cerebral I/R injury in vivo and in vitro. The mechanism of NGR1 neuroprotection involves inhibition of NADPH oxidase activity and mitochondrial dysfunction via ER-dependent activation of Akt/Nrf2 pathways.


International Journal of Cardiology | 2015

Elatoside C protects the heart from ischaemia/reperfusion injury through the modulation of oxidative stress and intracellular Ca2 + homeostasis

Min Wang; Guibo Sun; Jing-yi Zhang; Yun Luo; Yingli Yu; Xudong Xu; Xiangbao Meng; Miao-di Zhang; Wen-bin Lin; Xiaobo Sun

BACKGROUND We have previously shown that Elatoside C reduces cardiomyocyte apoptosis during ischaemia/reperfusion (I/R). Here, we investigated whether Elatoside C improves heart function in isolated rat hearts subjected to I/R and elucidated the potential mechanisms involved in Elatoside C-induced protection. METHODS AND RESULTS Isolated rat hearts were subjected to global ischaemia followed by reperfusion in the absence or presence of Elatoside C. We found that Elatoside C significantly attenuated cardiac dysfunction and depressed oxidative stress induced by I/R. Consistently, Elatoside C prevented I/R-induced mitochondrial dysfunction, which was evident by the inhibition of mitochondrial ROS production, mitochondrial permeability transition pore (mPTP) opening, cytochrome c release from the mitochondria and Bax translocation. Moreover, Elatoside C improved abnormal calcium handling during I/R, including increasing sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) activity, alleviating [Ca(2+)]ER depletion, and reducing the expression levels of ER stress protein markers. All of these protective effects of Elatoside C were partially abolished by the PI3K/Akt inhibitor LY294002, ERK1/2 inhibitor PD98059, and JAK2/STAT3 inhibitor AG490. Further assessment in isolated cardiomyocytes showed that Elatoside C maintained the Ca(2+) transients and cell shortening against I/R. CONCLUSIONS Elatoside C protects against cardiac injury during I/R by attenuating oxidative stress and [Ca(2+)]i overload through the activation of both the reperfusion injury salvage kinase (RISK) pathway (including PI3K/Akt and ERK1/2) and the survivor activating factor enhancement (SAFE) pathway (including JAK2/STAT3) and, subsequently, inhibiting the opening of mPTPs.

Collaboration


Dive into the Xiangbao Meng's collaboration.

Top Co-Authors

Avatar

Xiaobo Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Guibo Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Min Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yun Luo

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Meng Qin

Academy of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xudong Xu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Gui-bo Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jing-xue Ye

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge