Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangbing Mao is active.

Publication


Featured researches published by Xiangbing Mao.


PLOS ONE | 2016

Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus

Xiangbing Mao; Changsong Gu; Haiyan Hu; Jun Tang; Daiwen Chen; Bing Yu; Jun He; Jie Yu; Junqiu Luo; Gang Tian

Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function, which was possibly due to the decreasing apoptosis of jejunal mucosal cells and the improvement of intestinal microbiota.


PLOS ONE | 2015

Dietary Leucine Supplementation Improves the Mucin Production in the Jejunal Mucosa of the Weaned Pigs Challenged by Porcine Rotavirus.

Xiangbing Mao; Minghui Liu; Jun Tang; Hao Chen; Daiwen Chen; Bing Yu; Jun He; Jie Yu; P. Zheng

The present study was mainly conducted to determine whether dietary leucine supplementation could attenuate the decrease of the mucin production in the jejunal mucosa of weaned pigs infected by porcine rotavirus (PRV). A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets supplemented with 1.00% L-leucine or 0.68% L-alanine (isonitrogenous control) for 17 d. On day 11, all pigs were orally infused PRV or the sterile essential medium. During the first 10 d of trial, dietary leucine supplementation could improve the feed efficiency (P = 0.09). The ADG and feed efficiency were impaired by PRV infusion (P<0.05). PRV infusion also increased mean cumulative score of diarrhea, serum rotavirus antibody concentration and crypt depth of the jejunal mucosa (P<0.05), and decreased villus height: crypt depth (P = 0.07), goblet cell numbers (P<0.05), mucin 1 and 2 concentrations (P<0.05) and phosphorylated mTOR level (P<0.05) of the jejunal mucosa in weaned pigs. Dietary leucine supplementation could attenuate the effects of PRV infusion on feed efficiency (P = 0.09) and mean cumulative score of diarrhea (P = 0.09), and improve the effects of PRV infusion on villus height: crypt depth (P = 0.06), goblet cell numbers (P<0.05), mucin 1 (P = 0.08) and 2 (P = 0.07) concentrations and phosphorylated mTOR level (P = 0.08) of the jejunal mucosa in weaned pigs. These results suggest that dietary 1% leucine supplementation alleviated the decrease of mucin production and goblet cell numbers in the jejunal mucosa of weaned pigs challenged by PRV possibly via activation of the mTOR signaling.


PLOS ONE | 2014

Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

Jie Yu; Bing Yu; Jun He; P. Zheng; Xiangbing Mao; Guoquan Han; Daiwen Chen

Prolonged and excessive glucocorticoids (GC) exposure resulted from Cushings syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g) were administrated with 100 µg/ml corticosterone (CORT) or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.


BMC Microbiology | 2016

Intestinal microbiota could transfer host Gut characteristics from pigs to mice

H. Diao; H. L. Yan; Y. Xiao; Bing Yu; Jie Yu; Jun He; P. Zheng; Benhua Zeng; Hong Wei; Xiangbing Mao; Daiwen Chen

BackgroundThe present study was conducted to compare the differences in gut microbiota composition and gut-phenotypes among pig breeds, and determine whether these differences would transmit to mice colonized with fecal microbiota of different pig breeds. A total of 24 1-day-old germ-free BALB/C mice were divided into 3 groups (TFM, YFM and RFM), which were transplanted with intact fecal microbiota of Tibetan pig (TP), Yorkshire pig (YP) and Rongchang pig (RP), respectively.ResultsResults showed that different pig breeds exhibited distinct gut microbiota profile based on high-throughput pyrosequencing. YP exhibited a lower Firmicutes/Bacteroidetes ratio and apparent genera differences compared with RP and TP, and higher levels of bacteria from Spirochaetes were observed in TP compared with RP and YP (P < 0.05). Transplanted porcine microbiota into GF mice replicated the phenotypes of pig donors. Moreover, the three groups of donor pigs and their mice recipients exhibited different intestinal index and morphology. TP and RP had higher intestinal weight and relative CDX2 mRNA expression in ileum than YP, and longer intestine, higher villus height of duodenum and jejunum were observed in TP compared with YP and RP (P < 0.05). TP exhibited higher GLP-2 mRNA expression in duodenum and jejunum than RP (P < 0.05). Similarly, YFM had lower intestine weight and CDX2 mRNA expression in ileum than TFM and RFM (P < 0.05). The intestine length in TFM was longer than that in RFM, and TFM had higher villus height in duodenum and jejunum and GLP-2 mRNA expression in ileum than the other two groups (P < 0.05). Besides, the digestive and absorptive ability was different among the three groups in donor pigs and mice recipients. YP had higher jejunal lactase and maltase activities than TP and RP, while TP had higher activities of jejunal ATPase, γ-GT, and relative SGLT1 mRNA expression in duodenum and jejunum than YP and RP (P < 0.05). Likewise, YFM had higher jejunal sucrase and maltase activities than TFM and RFM, whereas higher jejunal γ-GT activity and relative SGLT1 mRNA expression in duodenum and ileum were observed in TFM compared with YFM and RFM (P < 0.05). In addition, Tibetan pigs-derived microbiota improved gut barrier in mice recipients. The concentration of MDA in YP was higher than that in TP and RP (P = 0.078), and the relative ZO-1 mRNA expression in ileum in TP was higher than that in YP (P < 0.05). Likely, compared with TFM and RFM, YFM exhibited increasing MDA concentration in jejunum (P = 0.098), and the relative ZO-1 mRNA expression in duodenum and ileum in TFM were higher than that in YFM (P < 0.05).ConclusionsThere were huge differences in gut microbiota composition and gut characteristics among pig breeds, and gut microbiota could partially convey host gut characteristics from pigs to mice.


Archives of Animal Nutrition | 2015

Effect of 25-hydroxyvitamin D3 on rotavirus replication and gene expressions of RIG-I signalling molecule in porcine rotavirus-infected IPEC-J2 cells.

Ye Zhao; Bing Yu; Xiangbing Mao; Jun He; Zhiqing Huang; P. Zheng; Jie Yu; Guoquan Han; Xiaofang Liang; Daiwen Chen

The study evaluated whether a 25-hydroxyvitamin D3 (25D3) supplementation decreases the replication of rotavirus by the retinoic acid-inducible gene I (RIG-I) signalling pathway in a porcine small intestinal epithelial cell line (IPEC-J2). The results show that IPEC-J2 cells express high baseline levels of 1α-hydroxylase (CYP27B1), which converts inactive 25D3 to the active 1,25-dihydroxyvitamin D3 (1,25D3). Porcine rotavirus (PRV) infection alone resulted in a significant increase in CYP27B1 mRNA, which augmented the production of active vitamin D. Physiological concentrations of 25D3 were found to decrease PRV replication in IPEC-J2 cells. RIG-I plays an important role in the recognition of double-stranded RNA virus by host cells. Upon recognition, RIG-I triggers a series of signalling molecules such as interferon-β (IFN-β) promoter stimulator 1 (IPS-1) leading to the expression of type I interferons (IFN-β). Active 25D3 that was generated by PRV-infected IPEC-J2 cells led to an increased expression of toll-like receptors 3 (TLR3), RIG-I, IPS-1, IFN-β and IFN-stimulated genes 15 (ISG15) with important innate immune functions. Inhibiting CYP27B1 also failed to increase RIG-I, IPS-1, IFN-β and ISG15 mRNA expression. These observations suggest that 25D3 can directly inhibit PRV in IPEC-J2 cells, which requires this active form of vitamin D. The anti-rotavirus effect of 25D3 is mediated at least in part by RIG-I signalling pathways in IPEC-J2 cells.


RSC Advances | 2018

Modulation of intestine development by fecal microbiota transplantation in suckling pigs

H. Diao; Haijing Yan; Y. Xiao; Bing Yu; P. Zheng; J. He; Jie Yu; Xiangbing Mao; Daiwen Chen

The present study was conducted to investigate the effects of early fecal microbiota transplantation on gut development in sucking piglets. A total of 24 3 day-old DLY sucking piglets (2.11 ± 0.15) kg were randomly divided into four groups (TMP, YMP, RMP and control group (CON)), which were transplanted with intact fecal microbiota of Tibetan pig (TP), Yorkshire pig (YP), Rongchang pig (RP), and without transplantation, respectively. The whole trial lasted for 56 d. The results are as follows: when compared with the YMP and RMP treatments, TMP and CON had a lower diarrhea index (P < 0.05), TMP and CON had higher GLP-2 and ANG4 mRNA abundances in the ileum (P < 0.05), and the TMP had a higher jejunal villus height: crypt depth and a higher colonic GLP-2 mRNA abundance (P < 0.05). Moreover, when compared with the YMP and RMP treatments, TMP had an enhanced DMT1 mRNA abundance in the duodenum (P < 0.05), TMP and CON had a greater lactase activity and a higher DMT1 mRNA abundance in the jejunum (P < 0.05), and CON had a higher γ-GT activity in the jejunum (P < 0.05). The jejunal Ca2+, Mg2+-ATPase activity in TMP was higher than that in CON, and the jejunal Na+, K+-ATPase activity in TMP was higher than that in the other three treatments (P < 0.05). Besides, when compared with the YMP and RMP treatments, TMP had a lower MDA content and a higher MUC1 mRNA abundance in the jejunum (P < 0.05); CON had a higher SOD activity in the jejunum (P < 0.05), whereas TMP and CON had a higher butyric acid concentration in the colon and a lower LPS content in the serum (P < 0.05). Finally, when compared with the TMP treatment, the other three treatments had an enhanced IL-10 mRNA abundance in the colon (P < 0.05), YMP and CON had higher counts of Escherichia coli in the colonic digesta (P < 0.05), and the CON had lower counts of Lactobacillus spp in the cecal and colonic digesta (P < 0.05). These data indicated that early transplantation of the fecal microbiota from the Yorkshire pigs and Rongchang pigs to DLY suckling piglets would destroy the gut microbiota balance and thus damage intestinal health.


Microbial Ecology | 2018

Fungi in Gastrointestinal Tracts of Human and Mice: from Community to Functions

Jiayan Li; Daiwen Chen; Bing Yu; Jun He; Ping Zheng; Xiangbing Mao; Jie Yu; Junqiu Luo; Gang Tian; Zhiqing Huang; Yuheng Luo

Fungi are often ignored in studies on gut microbes because of their low level of presence (making up only 0.1% of the total microorganisms) in the gastrointestinal tract (GIT) of monogastric animals. Recent studies using novel technologies such as next generation sequencing have expanded our understanding on the importance of intestinal fungi in humans and animals. Here, we provide a comprehensive review on the fungal community, the so-called mycobiome, and their functions from recent studies in humans and mice. In the GIT of humans, fungi belonging to the phyla Ascomycota, Basidiomycota and Chytridiomycota are predominant. The murine intestines harbor a more diverse assemblage of fungi. Diet is one of the major factors influencing colonization of fungi in the GIT. Presence of the genus Candida is positively associated with dietary carbohydrates, but are negatively correlated with dietary amino acids, proteins, and fatty acids. However, the relationship between diet and the fungal community (and functions), as well as the underlying mechanisms remains unclear. Dysbiosis of intestinal fungi can cause invasive infections and inflammatory bowel diseases (IBD). However, it is not clear whether dysbiosis of the mycobiome is a cause, or a result of IBD. Compared to non-inflamed intestinal mucosa, the abundance and diversity of fungi is significantly increased in the inflamed mucosa. The commonly observed commensal fungal species Candida albicans might contribute to occurrence and development of IBD. Limited studies show that Candida albicans might interact with immune cells of the host intestines through the pathways associated with Dectin-1, Toll-like receptor 2 (TLR2), and TLR4. This review is expected to provide new thoughts for future studies on intestinal fungi and for new therapies to fungal infections in the GIT of human and animals.


RSC Advances | 2017

Stimulation of intestinal growth with distal ileal infusion of short-chain fatty acid: a reevaluation in a pig model

H. Diao; A. R. Jiao; Bing Yu; J. He; Jie Yu; P. Zheng; Zhiqing Huang; Yuheng Luo; Junqiu Luo; Xiangbing Mao; Daiwen Chen

In this study, 18 barrows (Duroc × Landrance × Yorkshire) with average initial body weight of 30.72 (±1.48) kg fitted with a T-cannula in the terminal ileum were randomly allotted to 3 treatments to determine the underlying mechanisms of the regulation role of SCFAs on the intestinal development in a pig model. The treatment groups were: (1) control, (2) antibiotics, Ab, (3) antibiotics + SCFAs (acetic, propionic and butyric acids; 61.84, 18.62, and 12.55 mM, respectively), AS. Antibiotics administration decreased total viable bacteria in the porcine feces by 10 folds (P < 0.05). Compared with the control group, pigs in the Ab group had lower SCFAs concentrations in the serum and digesta, as well as decreased SCFAs receptors abundances in the ileum and colon (P < 0.05). However, the SCFAs concentrations and SCFAs receptors abundances in the AS group were higher than those of Ab group (P < 0.05). SCFAs infusion led to alteration of the intestinal index, morphology and elevation of the intestinal development-related genes abundances and the nutrients digestibility and decreasing of the percentage of apoptotic cells when compared with the Ab group (P < 0.05). In addition, SCFAs infusion enhanced TJP1 and MUC-1 abundances and decreased the IL8 abundance in ileum and colon, which were accompanied by greater numbers of Lactobacillus spp. and Bifidobacterium spp., and less counts of Escherichia coli in these intestinal segments (P < 0.05). In conclusion, this study provides the systematic and potent evidences demonstrated that distal ileal infusion of SCFAs could stimulate intestinal growth and improve gut barrier function in a pig model.


BMC Microbiology | 2017

Dietary pea fiber increases diversity of colonic methanogens of pigs with a shift from Methanobrevibacter to Methanomassiliicoccus-like genus and change in numbers of three hydrogenotrophs

Yuheng Luo; Hong Chen; Bing Yu; Jun He; Ping Zheng; Xiangbing Mao; Gang Tian; Jie Yu; Zhiqing Huang; Junqiu Luo; Daiwen Chen

BackgroundPea fiber (PF) is a potential fibrous supplement in swine production. The influence of dietary PF on microbial community in the colon of pigs remains largely unexplored. Methanogens in the hindgut of monogastric animals play important roles in degradation of dietary fibers and efficient removal of microbial metabolic end product H2. Understanding the impact of dietary PF on the structure of colonic methanogens may help understand the mechanisms of microbe-mediated physiological functions of PF. This study investigated the influence of PF on the diversity and quantity and/or activity of colonic methanongens of piglets and finishing pigs. Four archaeal 16S rRNA clone libraries were constructed for piglets and finishers fed with control (Piglet-C and Finisher-C) or PF diet (Piglet-P and Finisher-P).ResultsThere were 195, 190, 194 and 196 clones obtained from the library Piglet-C, Piglet-P, Finisher-C and Finisher-P, respectively, with corresponding 12, 11, 11 and 16 OTUs (operational taxonomic units). Significant differences of Shannon Index among the four libraries were found (P < 0.05). Libshuff analysis showed that the archaeal community structure among the four libraries were significantly different (P < 0.0001). The predominant methanogens shifted from Methanobrevibacter to Methanobrevibacter and Methanomassiliicoccus-like genus as a result of dietary PF. Supplementation of PF significantly increased the copy numbers of mcrA and dsrA genes (P < 0.05).ConclusionsAlteration of methanogenic community structure may lead to functional transition from utilization of H2/CO2 to employment of both H2/CO2 and methanol/CO2. Quantification of three functional genes (mcrA, dsrA and fhs) of methanogens, sulfate-reducing bacteria (SRB) and acetogens revealed that dietary PF also increased the activity of methanogens and SRB,probably associated with increased proportion of Methanomassiliicoccus luminyensis-species. Further study is required to examine the interaction between specific methanogens and SRB during fermentation of dietary PF.


PLOS ONE | 2018

Oral administration of short chain fatty acids could attenuate fat deposition of pigs

A. R. Jiao; H. Diao; Bing Yu; Jianxing He; Jun Yu; Ping Zheng; Zhiqing Huang; Y. H. Luo; Junqiu Luo; Xiangbing Mao; Daiwen Chen

Short chain fatty acids (SCFAs) are the main products of indigestible carbohydrates that are fermented by microbiota in the hindgut. This study was designed to investigate the effects of oral SCFAs administration on the lipid metabolism of weaned pigs. A total of 21 barrows were randomly allocated into three groups, including control group (orally infused with 200 mL physiological saline per day), low dose SCFAs group (orally infused with 200 mL SCFAs containing acetic acid 20.04 mM, propionic acid 7.71 mM and butyric acid 4.89 mM per day), and high dose SCFAs group (orally infused with 200 mL SCFAs containing acetic acid 40.08 mM, propionic acid 15.42 mM and butyric acid 9.78 mM per day). The results showed that the average daily feed intake of SCFAs groups were lower than that of control group (P<0.05). Oral administration of SCFAs decreased the concentrations of triglyceride (TG), total cholesterol (TC), high density lipoprotein-cholesterol and insulin (P<0.05), and increased the leptin concentration in serum (P<0.05). The total fat, as well as TC and TG levels in liver, was decreased by oral SCFAs administration (P<0.05). In addition, SCFAs down-regulated the mRNA expressions of fatty acid synthase (FAS) and sterol regulatory element binding protein 1c (P<0.05), and enhanced the mRNA expression of carnitine palmitoyltransferase-1α (CPT-1α) in liver (P<0.05). SCFAs also decreased FAS, acetyl-CoA carboxylase (ACC) and peroxisome proliferator activated receptor σ mRNA expressions in longissimus dorsi (P<0.05). And in abdominal fat, SCFAs reduced FAS and ACC mRNA expressions (P<0.05), and increased CPT-1α mRNA expression (P<0.05). These results suggested that oral administration of SCFAs could attenuate fat deposition in weaned pigs via reducing lipogenesis and enhancing lipolysis of different tissues.

Collaboration


Dive into the Xiangbing Mao's collaboration.

Top Co-Authors

Avatar

Bing Yu

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Daiwen Chen

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Jie Yu

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Jun He

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

P. Zheng

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Zhiqing Huang

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Junqiu Luo

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

H. Diao

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Yuheng Luo

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Gang Tian

Chinese Ministry of Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge