Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangbo Zhao is active.

Publication


Featured researches published by Xiangbo Zhao.


Journal of Biological Chemistry | 2009

An Oxyferrous Heme/Protein-based Radical Intermediate Is Catalytically Competent in the Catalase Reaction of Mycobacterium tuberculosis Catalase-Peroxidase (KatG)

Javier Suarez; Kalina Ranguelova; Andrzej A. Jarzecki; Julia Manzerova; Vladimir Krymov; Xiangbo Zhao; Shengwei Yu; Leonid Metlitsky; Gary J. Gerfen; Richard S. Magliozzo

A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.


Journal of Biological Chemistry | 2003

Rapid formation of compound II and a tyrosyl radical in the Y229F mutant of Mycobacterium tuberculosis catalase-peroxidase disrupts catalase but not peroxidase function.

Shengwei Yu; Stefania Girotto; Xiangbo Zhao; Richard S. Magliozzo

Catalase-peroxidases (KatG), which belong to Class I heme peroxidase enzymes, have high catalase activity and substantial peroxidase activity. The Y229F mutant of Mycobacterium tuberculosis KatG was prepared and characterized to investigate the functional role of this conserved residue unique to KatG enzymes. Purified, overexpressed KatG[Y229F] exhibited severely reduced steady-state catalase activity while the peroxidase activity was enhanced. Optical stopped-flow experiments showed rapid formation of Compound (Cmpd) II (oxyferryl heme intermediate) in the reaction of resting KatG[Y229F] with peroxyacetic acid or chloroperoxybenzoic acid, without detectable accumulation of Cmpd I (oxyferryl heme π-cation radical intermediate), the latter being readily observed in the wild-type enzyme under similar conditions. Facile formation of Cmpd III (oxyferrous enzyme) also occurred in the mutant in the presence of micromolar hydrogen peroxide. Thus, the lost catalase function may be explained in part because of formation of intermediates that do not participate in catalatic turnover. The source of the reducing equivalent required for generation of Cmpd II from Cmpd I was shown by rapid freeze-quench electron paramagnetic resonance spectroscopy to be a tyrosine residue, just as in wild-type KatG. The kinetic coupling of radical generation and Cmpd II formation was shown in KatG[Y229F]. Residue Y229, which is a component of a newly defined three amino acid adduct in catalase-peroxidases, is critically important for protecting the catalase activity of KatG.


Journal of Inorganic Biochemistry | 2012

Cytotoxic Hydrophilic Iminophosphorane Coordination Compounds of d8 Metals. Studies of their Interactions with DNA and HSA

Monica Carreira; Rubén Calvo-Sanjuán; Mercedes Sanaú; Xiangbo Zhao; Richard S. Magliozzo; Isabel Marzo; María Contel

The synthesis and characterization of a new water-soluble N,N-chelating iminophosphorane ligand TPAN-C(O)-2-NC(5)H(4) (N,N-IM) (1) and its d(8) (Au(III), Pd(II) and Pt(II)) coordination complexes are reported. The structures of cationic [AuCl(2)(N,N-IM)]ClO(4) (2) and neutral [MCl(2)(N,N-IM)] M=Pd (3), Pt(4) complexes were determined by X-ray diffraction studies or by means of density-functional calculations. While the Pd and Pt compounds are stable in mixtures of DMSO/H(2)O over 4 days, the gold derivative (2) decomposes quickly to TPAO and previously reported neutral gold(III) compound [AuCl(2)(N,N-H)] 5 (containing the chelating N,N-fragment HN-C(O)-2-NC(5)H(4)). The cytotoxicities of complexes 2-5 were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells and DU-145 human prostate cancer cells. Pt (4) and Au compounds (2 and 5) are more cytotoxic than cisplatin to these cell lines and to cisplatin-resistant Jurkat sh-Bak cell lines and their cell death mechanism is different from that of cisplatin. All the compounds show higher toxicity against leukemia cells when compared to normal human T-lymphocytes (PBMC). The interaction of the Pd and Pt compounds with calf thymus and plasmid (pBR322) DNA is different from that of cisplatin. All compounds bind to human serum albumin (HSA) faster than cisplatin (measured by fluorescence spectroscopy). Weak and stronger binding interactions were found for the Pd (3) and Pt (4) derivatives by isothermal titration calorimetry. Importantly, for the Pt (4) compounds the binding to HSA was reversed by addition of a chelating agent (citric acid) and by a decrease in pH.


Journal of Biological Chemistry | 2004

Evidence for Radical Formation at Tyr-353 in Mycobacterium tuberculosis Catalase-Peroxidase (KatG)

Xiangbo Zhao; Stefania Girotto; Shengwei Yu; Richard S. Magliozzo

Mycobacterium tuberculosis KatG is a heme-containing catalase-peroxidase responsible for activation, through its peroxidase cycle, of the front line antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide). Formation of Compound I (oxyferryl heme-porphyrin π-cation radical), the classical peroxidase intermediate generated when the resting enzyme turns over with alkyl peroxides, is rapidly followed by production of a protein-centered tyrosyl radical in this enzyme. In our efforts to identify the residue at which this radical is formed, nitric oxide was used as a radical scavenging reagent. Quenching of the tyrosyl radical generated in the presence of NO was shown using electron paramagnetic resonance spectroscopy, and formation of nitrotyrosine was confirmed by proteolytic digestion followed by high performance liquid chromatography analysis of the NO-treated enzyme. These results are consistent with formation of nitrosyltyrosine by addition of NO to tyrosyl radical and oxidation of this intermediate to nitrotyrosine. Two predominant nitrotyrosine-containing peptides were identified that were purified and sequenced by Edman degradation. Both peptides were derived from the same M. tuberculosis KatG sequence spanning residues 346–356 with the amino acid sequence SPAGAWQYTAK, and both peptides contained nitrotyrosine at residue 353. Some modification of Trp-351 most probably into nitrosotryptophan was also found in one of the two peptides. Control experiments using denatured KatG or carried out in the absence of peroxide did not produce nitrotyrosine. In the mutant enzyme KatG(Y353F), which was constructed using site-directed mutagenesis, a tyrosyl radical was also formed upon turnover with peroxide but in poor yield compared with wild-type KatG. Residue Tyr-353 is unique to M. tuberculosis KatG and may play a special role in the function of this enzyme.


Journal of Biological Chemistry | 2009

Role of the Oxyferrous Heme Intermediate and Distal Side Adduct Radical in the Catalase Activity of Mycobacterium tuberculosis KatG Revealed by the W107F Mutant

Xiangbo Zhao; Shengwei Yu; Kalina Ranguelova; Javier Suarez; Leonid Metlitsky; Johannes P. M. Schelvis; Richard S. Magliozzo

Catalase-peroxidase (KatG) is essential in Mycobacterium tuberculosis for oxidative stress management and activation of the antitubercular pro-drug isoniazid. The role of a unique distal side adduct found in KatG enzymes, involving linked side chains of residues Met255, Tyr229, and Trp107 (MYW), in the unusual catalase activity of KatG is addressed here and in our companion paper (Suarez, J., Ranguelova, K., Jarzecki, A. A., Manzerova, J., Krymov, V., Zhao, X., Yu, S., Metlitsky, L., Gerfen, G. J., and Magliozzo, R. S. (2009) J. Biol. Chem. 284, in press). The KatG[W107F] mutant exhibited severely reduced catalase activity yet normal peroxidase activity, and as isolated contains more abundant 6-coordinate heme in high spin and low spin forms compared with the wild-type enzyme. Most interestingly, oxyferrous heme is also found in the purified enzyme. Oxyferrous KatG[W107F] was prepared by photolysis in air of the carbonyl enzyme or was generated using hydrogen peroxide decayed with a t½ of 2 days compared with 6 min for wild-type protein. The stability of oxyenyzme was modestly enhanced in KatG[Y229F] but was not affected in KatG[M255A]. Optical stopped-flow experiments showed rapid formation of Compound I in KatG[W107F] and facile formation of oxyferrous heme in the presence of micromolar hydrogen peroxide. An analysis of the relationships between catalase activity, stability of oxyferrous enzyme, and a proposed MYW adduct radical is presented. The loss of catalase function is assigned to the loss of the MYW adduct radical and structural changes that lead to greatly enhanced stability of oxyenzyme, an intermediate of the catalase cycle of native enzyme.


Journal of Biological Chemistry | 2012

Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG

Xiangbo Zhao; Abdelahad Khajo; Sanchez Jarrett; Javier Suarez; Yan Levitsky; Richard M. Burger; Andrzej A. Jarzecki; Richard S. Magliozzo

Background: Catalase activity in catalase-peroxidases occurs through a poorly defined mechanism requiring residues Arg-418, Asp-137, and the amino acid adduct (M255Y229W107). Results: Along with an adduct radical, Arg-418 stimulates O2 release from dioxyheme, the rapid formation of which requires Asp-137. Conclusion: The electronics of the Arg-418:MYW-radical interaction enables discharge of O2 during H2O2 turnover. Significance: An atypical catalase mechanism operates in KatG. Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction.


Biochemistry | 2006

Hydrogen Peroxide-Mediated Isoniazid Activation Catalyzed by Mycobacterium Tuberculosis Catalase-Peroxidase (Katg) and its S315T Mutant.

Xiangbo Zhao; Hong Yu; Shengwei Yu; Feng Wang; James C. Sacchettini; Richard S. Magliozzo


Journal of the American Chemical Society | 2010

A radical on the Met-Tyr-Trp modification required for catalase activity in catalase-peroxidase is established by isotopic labeling and site-directed mutagenesis.

Xiangbo Zhao; Javier Suarez; Abdelahad Khajo; Shengwei Yu; Leonid Metlitsky; Richard S. Magliozzo


Biochemistry | 2005

Mycobacterium tuberculosis KatG(S315T) Catalase−Peroxidase Retains All Active Site Properties for Proper Catalytic Function†

Sofia M. Kapetanaki; Salem Chouchane; Shengwei Yu; Xiangbo Zhao; Richard S. Magliozzo; Johannes P. M. Schelvis


Biochemistry | 2007

Characterization of the Binding of Isoniazid and Analogues to Mycobacterium tuberculosis Catalase-Peroxidase †

Xiangbo Zhao; Shengwei Yu; Richard S. Magliozzo

Collaboration


Dive into the Xiangbo Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengwei Yu

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Javier Suarez

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Leonid Metlitsky

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kalina Ranguelova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdelahad Khajo

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge