Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangchun Yu is active.

Publication


Featured researches published by Xiangchun Yu.


Plant Physiology | 2011

ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during Nitrogen Deficiency

Yang Yang; Xiangchun Yu; Lianfen Song; Chengcai An

Triacylglycerol (TAG) is the major seed storage lipid and is important for biofuel and other renewable chemical uses. Acyl-coenzyme A:diacylglycerol acyltransferase1 (DGAT1) is the rate-limiting enzyme in the TAG biosynthesis pathway, but the mechanism of its regulation is unknown. Here, we show that TAG accumulation in Arabidopsis (Arabidopsis thaliana) seedlings increased significantly during nitrogen deprivation (0.1 mm nitrogen) with concomitant induction of genes involved in TAG biosynthesis and accumulation, such as DGAT1 and OLEOSIN1. Nitrogen-deficient seedlings were used to determine the key factors contributing to ectopic TAG accumulation in vegetative tissues. Under low-nitrogen conditions, the phytohormone abscisic acid plays a crucial role in promoting TAG accumulation in Arabidopsis seedlings. Yeast one-hybrid and electrophoretic mobility shift assays demonstrated that ABSCISIC ACID INSENSITIVE4 (ABI4), an important transcriptional factor in the abscisic acid signaling pathway, bound directly to the CE1-like elements (CACCG) present in DGAT1 promoters. Genetic studies also revealed that TAG accumulation and DGAT1 expression were reduced in the abi4 mutant. Taken together, our results indicate that abscisic acid signaling is part of the regulatory machinery governing TAG ectopic accumulation and that ABI4 is essential for the activation of DGAT1 in Arabidopsis seedlings during nitrogen deficiency.


Plant Physiology and Biochemistry | 2013

Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea.

Liwen Fu; Xiangchun Yu; Chengcai An

Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses.


The Plant Cell | 2016

Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA

Qian Wu; Xu Zhang; Marta Peirats-Llobet; Borja Belda-Palazón; Xiaofeng Wang; Shao Cui; Xiangchun Yu; Pedro L. Rodriguez; Chengcai An

Two RING E3 ligases mediate the degradation of the phosphatase PP2CA, a repressor of abscisic acid signaling, thereby modulating the activation of the ABA pathway in Arabidopsis. Abscisic acid (ABA) is an essential hormone for plant development and stress responses. ABA signaling is suppressed by clade A PP2C phosphatases, which function as key repressors of this pathway through inhibiting ABA-activated SnRK2s (SNF1-related protein kinases). Upon ABA perception, the PYR/PYL/RCAR ABA receptors bind to PP2Cs with high affinity and biochemically inhibit their activity. While this mechanism has been extensively studied, how PP2Cs are regulated at the protein level is only starting to be explored. Arabidopsis thaliana RING DOMAIN LIGASE5 (RGLG5) belongs to a five-member E3 ubiquitin ligase family whose target proteins remain unknown. We report that RGLG5, together with RGLG1, releases the PP2C blockade of ABA signaling by mediating PP2CA protein degradation. ABA promotes the interaction of PP2CA with both E3 ligases, which mediate ubiquitination of PP2CA and are required for ABA-dependent PP2CA turnover. Downregulation of RGLG1 and RGLG5 stabilizes endogenous PP2CA and diminishes ABA-mediated responses. Moreover, the reduced response to ABA in germination assays is suppressed in the rglg1 amiR (artificial microRNA)-rglg5 pp2ca-1 triple mutant, supporting a functional link among these loci. Overall, our data indicate that RGLG1 and RGLG5 are important modulators of ABA signaling, and they unveil a mechanism for activation of the ABA pathway by controlling PP2C half-life.


PLOS ONE | 2011

The LSD1-Interacting Protein GILP Is a LITAF Domain Protein That Negatively Regulates Hypersensitive Cell Death in Arabidopsis

Shanping He; Guihong Tan; Qian Liu; Kuowei Huang; Jiao Ren; Xu Zhang; Xiangchun Yu; Ping Huang; Chengcai An

Background Hypersensitive cell death, a form of avirulent pathogen-induced programmed cell death (PCD), is one of the most efficient plant innate immunity. However, its regulatory mechanism is poorly understood. AtLSD1 is an important negative regulator of PCD and only two proteins, AtbZIP10 and AtMC1, have been reported to interact with AtLSD1. Methodology/Principal Findings To identify a novel regulator of hypersensitive cell death, we investigate the possible role of plant LITAF domain protein GILP in hypersensitive cell death. Subcellular localization analysis showed that AtGILP is localized in the plasma membrane and its plasma membrane localization is dependent on its LITAF domain. Yeast two-hybrid and pull-down assays demonstrated that AtGILP interacts with AtLSD1. Pull-down assays showed that both the N-terminal and the C-terminal domains of AtGILP are sufficient for interactions with AtLSD1 and that the N-terminal domain of AtLSD1 is involved in the interaction with AtGILP. Real-time PCR analysis showed that AtGILP expression is up-regulated by the avirulent pathogen Pseudomonas syringae pv. tomato DC3000 avrRpt2 (Pst avrRpt2) and fumonisin B1 (FB1) that trigger PCD. Compared with wild-type plants, transgenic plants overexpressing AtGILP exhibited significantly less cell death when inoculated with Pst avrRpt2, indicating that AtGILP negatively regulates hypersensitive cell death. Conclusions/Significance These results suggest that the LITAF domain protein AtGILP localizes in the plasma membrane, interacts with AtLSD1, and is involved in negatively regulating PCD. We propose that AtGILP functions as a membrane anchor, bringing other regulators of PCD, such as AtLSD1, to the plasma membrane. Human LITAF domain protein may be involved in the regulation of PCD, suggesting the evolutionarily conserved function of LITAF domain proteins in the regulation of PCD.


Plant Physiology | 2012

Two Novel RING-Type Ubiquitin Ligases, RGLG3 and RGLG4, Are Essential for Jasmonate-Mediated Responses in Arabidopsis

Xu Zhang; Qian Wu; Jiao Ren; Wanqiang Qian; Shanping He; Kuowei Huang; Xiangchun Yu; Yin Gao; Ping Huang; Chengcai An

Jasmonates (JAs) regulate various stress responses and development processes in plants, and the JA pathway is tightly controlled. In this study, we report the functional characterization of two novel RING-type ubiquitin ligases, RING DOMAIN LIGASE3 (RGLG3) and RGLG4, in modulating JA signaling. Both RGLG3 and RGLG4 possessed ubiquitin ligase activities and were widely distributed in Arabidopsis (Arabidopsis thaliana) tissues. Altered expression of RGLG3 and RGLG4 affected methyl JA-inhibited root growth and JA-inductive gene expression, which could be suppressed by the coronatine insensitive1 (coi1) mutant. rglg3 rglg4 also attenuated the inhibitory effect of JA-isoleucine-mimicking coronatine on root elongation, and consistently, rglg3 rglg4 was resistant to the coronatine-secreting pathogen Pseudomonas syringae pv tomato DC3000, suggesting that RGLG3 and RGLG4 acted in response to the coronatine and promoted JA-mediated pathogen susceptibility. In addition, rglg3 rglg4 repressed wound-stunted plant growth, wound-stimulated expression of JA-responsive genes, and wound-induced JA biosynthesis, indicating their roles in JA-dependent wound response. Furthermore, both RGLG3 and RGLG4 responded to methyl JA, P. syringae pv tomato DC3000, and wounding in a COI1-dependent manner. Taken together, these results indicate that the ubiquitin ligases RGLG3 and RGLG4 are essential upstream modulators of JA signaling in response to various stimuli.


PLOS ONE | 2011

The LSD1-Type Zinc Finger Motifs of Pisum sativa LSD1 Are a Novel Nuclear Localization Signal and Interact with Importin Alpha

Shanping He; Kuowei Huang; Xu Zhang; Xiangchun Yu; Ping Huang; Chengcai An

Background Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein–protein interaction. Methodology/Principal Findings To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog of AtLSD1. Subcellular localization analysis of green fluorescent protein (GFP)-tagged PsLSD1 indicates that PsLSD1 is localized in the nucleus. Using a series of GFP-tagged PsLSD1 deletion mutants, we found that the three LSD1-type zinc finger motifs of PsLSD1 alone can target GFP to the nucleus, whereas deletion of the three zinc finger motifs or any individual zinc finger motif causes PsLSD1 to lose its nuclear localization, indicating that the three zinc finger motifs are necessary and sufficient for its nuclear localization. Moreover, site-directed mutagenesis analysis of GFP-tagged PsLSD1 indicates that tertiary structure and basic amino acids of each zinc finger motif are necessary for PsLSD1 nuclear localization. In addition, yeast two-hybrid, pull-down, and BiFC assays demonstrate that the three zinc finger motifs of PsLSD1 directly bind to importin α in vitro and in vivo. Conclusions/Significance Our data demonstrate that the LSD1-type zinc finger motifs of PsLSD1 are a novel nuclear localization signal and directly bind to importin α, and suggest that the nuclear import of LSD1 may rely on the interaction between its zinc finger motifs and importin α. Moreover, the nuclear localization of PsLSD1 suggests that LSD1 may function as a transcription regulator involved in negatively regulating PCD.


Acta Physiologiae Plantarum | 2014

OsCPK20 positively regulates Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea

Liwen Fu; Xiangchun Yu; Chengcai An

Calcium-dependent protein kinases are important decoders of calcium signals in plants, which are involved in plant immunity. We report isolation and functional characterization of a pathogen-responsive OsCPK20 gene in rice. The expression of OsCPK20 in rice was significantly induced following treatment with a Magnaporthe grisea elicitor. Overexpression of constitutively active OsCPK20 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK20 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic Arabidopsis and rice was associated with activated expression of both SA- and JA-related defense genes. We also found that OsCPK20 was significantly induced by drought stress, indicating that OsCPK20 might be involved in plant response to drought stress. Taken together, our results indicate that rice OsCPK20 positively regulates Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against M. grisea, and that it may enhance disease resistance by activating both SA- and JA-dependent defense responses.


Journal of Experimental Botany | 2015

Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4

Xu Zhang; Qian Wu; Shao Cui; Jiao Ren; Wanqiang Qian; Yang Yang; Shanping He; Jinfang Chu; Xiaohong Sun; Cunyu Yan; Xiangchun Yu; Chengcai An

Highlight Two ubiquitin ligases control fumonisin B1-elicited programmed cell death by modulating jasmonate signalling transduction in Arabidopsis.


Plant Signaling & Behavior | 2011

Nitrogen deficiency system is helpful in characterizing regulation mechanisms of ectopic triacylglycerol accumulation in Arabidopsis seedlings.

Yang Yang; Xiangchun Yu; Lianfen Song; Chengcai An

Triacylglycerol (TAG) is the major storage component accumulated in seed. However the regulatory mechanism of TAG synthesis and accumulation in non-seed tissues remains unknown. Recently, we found that nitrogen (N) deficiency (0.1mM N) caused an inducement of TAG biosynthesis in Arabidopsis seedlings. ABSCISIC ACID INSENSITIVE 4 (ABI4) was essential for the activation of Acyl-CoA:diacylglycerol acyltransferase1(DGAT1) expression during N deficiency in Arabidopsis seedlings. In this addendum, we further discussed the approaches to provide a net increase in total oil production in higher plants by using the low N platform. First, the N-deficient seedlings can be used to determine the key factors that regulate the ectopic expression of key genes in TAG metabolism. Second, the research on the relationship between TAG homeostasis and cell division will be helpful to find the key factors that specifically regulate TAG accumulation under the nutrient-limited condition.


PLOS ONE | 2012

I-PfoP3I: a novel nicking HNH homing endonuclease encoded in the group I intron of the DNA polymerase gene in Phormidium foveolarum phage Pf-WMP3.

Shuanglei Kong; Xinyao Liu; Liwen Fu; Xiangchun Yu; Chengcai An

Homing endonucleases encoded in a group I self-splicing intron in a protein-coding gene in cyanophage genomes have not been reported, apart from some free-standing homing edonucleases. In this study, a nicking DNA endonuclease, I-PfoP3I, encoded in a group IA2 intron in the DNA polymerase gene of a T7-like cyanophage Pf-WMP3, which infects the freshwater cyanobacterium Phormidium foveolarum is described. The Pf-WMP3 intron splices efficiently in vivo and self-splices in vitro simultaneously during transcription. I-PfoP3I belongs to the HNH family with an unconventional C-terminal HNH motif. I-PfoP3I nicks the intron-minus Pf-WMP3 DNA polymerase gene more efficiently than the Pf-WMP4 DNA polymerase gene that lacks any intervening sequence in vitro, indicating the variable capacity of I-PfoP3I. I-PfoP3I cleaves 4 nt upstream of the intron insertion site on the coding strand of EXON 1 on both intron-minus Pf-WMP3 and Pf-WMP4 DNA polymerase genes. Using an in vitro cleavage assay and scanning deletion mutants of the intronless target site, the minimal recognition site was determined to be a 14 bp region downstream of the cut site. I-PfoP3I requires Mg2+, Ca2+ or Mn2+ for nicking activity. Phylogenetic analysis suggests that the intron and homing endonuclease gene elements might be inserted in Pf-WMP3 genome individually after differentiation from Pf-WMP4. To our knowledge, this is the first report of the presence of a group I self-splicing intron encoding a functional homing endonuclease in a protein-coding gene in a cyanophage genome.

Collaboration


Dive into the Xiangchun Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge