Xiangdan Meng
University of Science and Technology Beijing
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiangdan Meng.
Analytical Chemistry | 2015
Haifeng Dong; Xiangdan Meng; Wenhao Dai; Yu Cao; Huiting Lu; Shu-Feng Zhou; Xueji Zhang
Herein, a highly sensitive and selective microRNA (miRNA) detection strategy using DNA-bio-bar-code amplification (BCA) and Nb·BbvCI nicking enzyme-assisted strand cycle for exponential signal amplification was designed. The DNA-BCA system contains a locked nucleic acid (LNA) modified DNA probe for improving hybridization efficiency, while a signal reported molecular beacon (MB) with an endonuclease recognition site was designed for strand cycle amplification. In the presence of target miRNA, the oligonucleotides functionalized magnetic nanoprobe (MNP-DNA) and gold nanoprobe (AuNP-DNA) with numerous reported probes (RP) can hybridize with target miRNA, respectively, to form a sandwich structure. After sandwich structures were separated from the solution by the magnetic field, the RP were released under high temperature to recognize the MB and cleaved the hairpin DNA to induce the dissociation of RP. The dissociated RP then triggered the next strand cycle to produce exponential fluorescent signal amplification for miRNA detection. Under optimized conditions, the exponential signal amplification system shows a good linear range of 6 orders of magnitude (from 0.3 pM to 3 aM) with limit of detection (LOD) down to 52.5 zM, while the sandwich structure renders the system with high selectivity. Meanwhile, the feasibility of the proposed strategy for cell miRNA detection was confirmed by analyzing miRNA-21 in HeLa lysates. Given the high-performance for miRNA analysis, the strategy has a promising application in biological detection and in clinical diagnosis.
Analytical Chemistry | 2017
Kai Zhang; Haifeng Dong; Wenhao Dai; Xiangdan Meng; Huiting Lu; Tingting Wu; Xueji Zhang
Herein, an efficient electrochemical tracer with advanced oxygen reduction reaction (ORR) performance was designed by controllably decorating platinum (Pt) (diameter, 1 nm) on the surface of compositionally tunable tin-doped indium oxide nanoparticle (Sn-In2O3) (diameter, 25 nm), and using the Pt/Sn-In2O3 as electrochemical tracer and interfacial term hairpin capture probe, a facile and ultrasensitive microRNA (miRNA) detection strategy was developed. The morphology and composition of the generated Pt/Sn-In2O3 NPs were comprehensively characterized by spectroscopic and microscopic measurements, indicating numerous Pt uniformly anchored on the surface of Sn-In2O3. The interaction between Pt and surface Sn as well as high Pt(111) exposure resulted in the excellent electrochemical catalytic ability and stability of the Pt/Sn-In2O3 ORR. As proof-of-principle, using streptavidin (SA) functionalized Pt/Sn-In2O3 (SA/Pt/Sn-In2O3) as electrochemical tracer to amplify the detectable signal and a interfacial term hairpin probe for target capture probe, a miRNA biosensor with a linear range from 5 pM to 0.5 fM and limit of detection (LOD) down to 1.92 fM was developed. Meanwhile, the inherent selectivity of the term hairpin capture probe endowed the biosensor with good base discrimination ability. The good feasibility for real sample detection was also demonstrated. The work paves a new avenue to fabricate and design high-effective electrocatalytic tracer, which have great promise in new bioanalytical applications.
Materials Chemistry Frontiers | 2018
Kai Zhang; Zhou Yang; Xiangdan Meng; Yu Cao; Yuedong Zhang; Wenhao Dai; Huiting Lu; Zhaofeng Yu; Haifeng Dong; Xueji Zhang
Photodynamic therapy (PDT) that utilizes apoptosis induced by reactive oxygen species (ROS) has received extensive attention in practical cancer therapy. However, the hypoxic microenvironment of solid tumors significantly limits the efficacy of therapy. Approaches that overcome the barriers to PDT in hypoxic conditions by simultaneously producing ROS exogenously and improving the oxygenation of tumors have never been studied. Herein, an activatable ROS platform was designed that uses the high reactivity of peroxidase-like Fe3O4 toward endogenous hydrogen peroxide (H2O2) to concurrently generate ˙OH as a therapeutic agent and provide O2 for oxygen-dependent PDT. Multifunctional chitosan-encapsulated Fe3O4 nanoparticles modified with CuS and porphyrin (FCCP NPs) were fabricated to achieve multimodal imaging and synergetic therapy. The FCCP NPs possess enhanced intrinsic peroxidase mimetic activity to produce ROS and O2 from endogenous H2O2. Multimodal imaging in vivo, including photoacoustic imaging (PAI), magnetic resonance imaging (MRI), photoluminescence imaging (PLI), and photothermal imaging (PTI), exploits the tumor-targeting property of FCCP NPs upon intravenous injection. It can induce cancer cell death with remarkable efficiency both in vitro and in vivo via synergetic treatment with PDT and photothermal therapy (PTT). This study demonstrates the promise of the activatable generation of ROS and O2 for PDT with nanotechnology to overcome a current deficiency in cancer therapies.
ACS Applied Materials & Interfaces | 2018
Yu Cao; Xiangdan Meng; Dongdong Wang; Kai Zhang; Wenhao Dai; Haifeng Dong; Xueji Zhang
Lately, photothermal therapy (PTT) and photodynamic therapy (PDT) dual-modal therapy has attracted much attention in cancer therapy as a synergistic therapeutic model. However, the integration of PDT and PTT in a single nanoagent for cancer therapy is still a challenging task. Herein, an intelligent MnO2/Cu2- xS-siRNA nanoagent simultaneously overcoming inherent limitations of PDT and PTT with remarkable PTT&PDT therapeutic efficiency enabling a multimode accurate tumor imaging diagnostic is designed. We first develop a general method to decorate Cu2- xS on the surface of MnO2 nanosheet (MnO2/Cu2- xS); then, it is loaded with heat shock protein (HSP) 70 siRNA to obtain MnO2/Cu2- xS-siRNA. The intracellular microRNA (miRNA) imaging can be realized by loading miRNA detection probes. In the tumor acidic microenvironment, the MnO2 is reduced to Mn2+ ion and triggers the decomposition of H2O2 into O2 to relieve tumor hypoxia. The reduced Mn2+ ions significantly enhance magnetic resonance imaging (MRI) contrast, and the Cu2- xS acts as a powerful photoacoustic (PA) and photothermal (PT) imaging agent, leading to trimodal accurate tumor-specific imaging and detection. Under a single NIR laser irradiation, the nanosystem exhibits superiority of PTT&PDT efficiency owing to siRNA-mediated blocked heat-shock response and MnO2-related relieved tumor hypoxia. This work highlights the great promise of modulating the tumor cellular defense mechanism and microenvironment with intelligent multifunctional nanoagents to achieve a comprehensive fighting cancer effect.
Theranostics | 2018
Wenhao Dai; Jing Zhang; Xiangdan Meng; Jie He; Kai Zhang; Yu Cao; Dongdong Wang; Haifeng Dong; Xueji Zhang
As important modulators of gene expression, microRNAs (miRNAs) have been identified as promising biomarkers with powerful predictive value in diagnosis and prognosis for several diseases, especially for cancers. Here we report a facile, multiple and sensitive miRNA detection method that uses conventional gel electrophoresis and catalytic hairpin assembly (CHA) system without any complex nanomaterials or enzymatic amplification. Methods: In this study, three pairs of hairpin probes are rationally designed with thermodynamically and kinetically preferable feasibility for the CHA process. In the present of target miRNA, the stem of the corresponding hairpin detection probe (HDP) will be unfolded and expose the concealed domain. The corresponding hairpin assistant probe (HAP) then replaces the hybridized target miRNA to form specific HDP/HAP complexes and releases miRNA based on thermodynamically driven entropy gain process, and the released miRNA triggers the next recycle to produce tremendous corresponding HDP/HAP complexes. Results: The results showed that the CHA gel assay can detect miRNA at fM levels and shows good capability of discriminating miRNA family members and base-mismatched miRNAs. It is able to analyze miRNAs extracted from cell lysates, which are consistent with the results of conventional polymerase chain reaction (PCR) method. Depending on the length of the designed hairpin probes, the CHA gel assay consisting of different hairpin probes effectively discriminated and simultaneously detected multiple miRNAs in homogenous solution and miRNAs extracted from cell lysates. Conclusion: The work highlights the practical use of a conventional gel electrophoresis for sensitive interesting nucleic acid sequences detection.
Biomaterials | 2018
Kai Zhang; Yuedong Zhang; Xiangdan Meng; Huiting Lu; Huan Chang; Haifeng Dong; Xueji Zhang
Hypoxia tumor microenvironment is a major challenge for photodynamical therapy (PDT), and hypoxia-activated chemotherapy combined PDT could be promising for enhanced anticancer therapy. In this study, we report an innovative 2-nitroimidazole derivative conjugated polyethylene glycol (PEG) amphoteric polymer theranostic liposome encapsulated a photosensitizer Chlorin e6 (Ce6), hypoxia-activated prodrug Tirapazamine (TPZ) and gene probe for synergistic photodynamic-chemotherapy. Ce6-mediated PDT upon irradiation with a laser induces hypoxia, which leads to the disassembly of the liposome and activates the antitumor activity of TPZ for improved cancer cell-killing. The released co-delivered gene probe could effectively detect the oncogenic intracellular biomarker for diagnosis. Both in vitro and in vivo studies demonstrated the greatly improved anti-cancer activity compared to conventional PDT. This work contributes to the design of hypoxia-responsive multifunctional liposome for tumor diagnosis and hypoxia-activated chemotherapy combined PDT for synergetic therapy, which holds great promise for future cancer therapy.
Advanced Functional Materials | 2017
Xiangdan Meng; Zhiqiang Liu; Yu Cao; Wenhao Dai; Kai Zhang; Haifeng Dong; Xiaoyan Feng; Xueji Zhang
ACS Applied Materials & Interfaces | 2016
Fang Xu; Haifeng Dong; Yu Cao; Huiting Lu; Xiangdan Meng; Wenhao Dai; Xueji Zhang; Khalid A. Al-Ghanim; Shahid Mahboob
Chemical Science | 2018
Xiangdan Meng; Wenhao Dai; Kai Zhang; Haifeng Dong; Xueji Zhang
Analytica Chimica Acta | 2018
Songsong Tang; Yuan Gu; Huiting Lu; Haifeng Dong; Kai Zhang; Wenhao Dai; Xiangdan Meng; Fan Yang; Xueji Zhang