Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangde Liu is active.

Publication


Featured researches published by Xiangde Liu.


American Journal of Respiratory and Critical Care Medicine | 2008

Lung Fibroblast Repair Functions in Patients with Chronic Obstructive Pulmonary Disease Are Altered by Multiple Mechanisms

Shinsaku Togo; Olaf Holz; Xiangde Liu; Hisatoshi Sugiura; Koichiro Kamio; Xiangqi Wang; Shin Kawasaki; Youngsoo Ahn; Karin Fredriksson; C. Magnus Sköld; Kai Christian Mueller; Detlef Branscheid; Lutz Welker; Henrik Watz; Helgo Magnussen; Stephen I. Rennard

RATIONALE Fibroblasts are believed to be the major cells responsible for the production and maintenance of extracellular matrix. Alterations in fibroblast functional capacity, therefore, could play a role in the pathogenesis of pulmonary emphysema, which is characterized by inadequate maintenance of tissue structure. OBJECTIVES To evaluate the hypothesis that deficient fibroblast repair characterizes cells obtained from individuals with chronic obstructive pulmonary disease (COPD) compared with control subjects. METHODS Fibroblasts were cultured from lung tissue obtained from individuals undergoing thoracotomy and were characterized in vitro. MEASUREMENTS AND MAIN RESULTS Fibroblasts from individuals with COPD, defined by reduced FEV(1), manifested reduced chemotaxis toward fibronectin and reduced contraction of three-dimensional collagen gels, two bioassays associated with fibroblast repair function. At least two mechanisms appear to account for these differences. Prostaglandin E (PGE), a known inhibitor of fibroblast repair functions, was produced in increased amount by fibroblasts from subjects with COPD, which also expressed increased amounts of the receptors EP2 and EP4, both of which signal through cyclic AMP. Incubation of fibroblasts with indomethacin or with the PKA inhibitor KT-5720 partially restored COPD subject fibroblast function. In addition, fibroblasts from subjects with COPD produced more transforming growth factor (TGF)-beta1, but manifested reduced response to TGF-beta1. The functional alterations in fibroblasts correlated with both lung function assessed by FEV(1) and, for the data available, with severity of emphysema assessed by Dl(CO). CONCLUSIONS Fibroblasts from individuals with COPD have reduced capability to sustain tissue repair, which suggests that this may be one mechanism that contributes to the development of emphysema.


American Journal of Respiratory and Critical Care Medicine | 2010

Reduced miR-146a Increases Prostaglandin E2 in Chronic Obstructive Pulmonary Disease Fibroblasts

Tadashi Sato; Xiangde Liu; Amy Nelson; Masanori Nakanishi; Nobuhiro Kanaji; Xingqi Wang; Miok Kim; Yingji Li; Jianhong Sun; Joel Michalski; Amol Patil; Hesham Basma; Olaf Holz; Helgo Magnussen; Stephen I. Rennard

RATIONALE Persistent inflammation plays a major role in chronic obstructive pulmonary disease (COPD) pathogenesis, but its mechanisms are incompletely defined. Overproduction of the inflammatory mediator prostaglandin (PG) E₂ by COPD fibroblasts contributes to reduced repair function. OBJECTIVES The present study determined if fibroblasts from subjects with COPD overproduce PGE₂ after stimulation with the inflammatory cytokines IL-1β and tumor necrosis factor-α, and further defined the mechanism for overproduction. METHODS Fibroblasts were isolated from parenchymal tissue obtained from smokers with and without COPD undergoing lung surgery. PGE₂, cyclooxygenases (COX), and miR-146a in these cells were evaluated by in vitro studies. MEASUREMENTS AND MAIN RESULTS After stimulation with inflammatory cytokines, COPD fibroblasts produced 2.7-fold more PGE₂ compared with controls with similar smoking history. The increase in PGE₂ depended on induction of COX-2, which increased to a greater degree in fibroblasts from subjects with COPD. Cytokines also induced microRNA miR-146a expression in both fibroblasts, but significantly less in COPD fibroblasts. miR-146a caused degradation of COX-2 mRNA; reduced expression prolonged COX-2 mRNA half-life in fibroblasts from subjects with COPD. Cytokine-stimulated PGE₂ production and miR-146a expression in cultured fibroblasts correlated with clinical severity assessed by expiratory airflow and diffusion capacity. CONCLUSIONS miR-146a seems to play a pathogenetic role in the abnormal inflammatory response in COPD. Increased half-life of inflammatory mRNAs is a mechanism of abnormal inflammation in this disease.


Molecular Pharmacology | 2006

Transforming growth factor-β receptor type 1 (TGFβRI) kinase activity but not p38 activation is required for TGFβRI-induced myofibroblast differentiation and profibrotic gene expression

Ann M. Kapoun; Nicholas J. Gaspar; Ying Wang; Debby Damm; Yu-Wang Liu; Gilbert O'Young; Diana Quon; Andrew Lam; Kimberly Munson; Thomas-Toan Tran; Jing Ying Ma; Alison Murphy; Sundeep Dugar; Sarvajit Chakravarty; Andrew A. Protter; Fu-Qiang Wen; Xiangde Liu; Stephen I. Rennard; Linda S. Higgins

Transforming growth factor-β (TGFβ) is a major mediator of normal wound healing and of pathological conditions involving fibrosis, such as idiopathic pulmonary fibrosis. TGFβ also stimulates the differentiation of myofibroblasts, a hallmark of fibrotic diseases. In this study, we examined the underlying processes of TGFβRI kinase activity in myofibroblast conversion of human lung fibroblasts using specific inhibitors of TGFβRI (SD-208) and p38 mitogen-activated kinase (SD-282). We demonstrated that SD-208, but not SD-282, inhibited TGFβ-induced SMAD signaling, myofibroblast transformation, and collagen gel contraction. Furthermore, we extended our findings to a rat bleomycin-induced lung fibrosis model, demonstrating a significant decrease in the number of myofibroblasts at fibroblastic foci in animals treated with SD-208 but not those treated with SD-282. SD-208 also reduced collagen deposition in this in vivo model. Microarray analysis of human lung fibroblasts identified molecular fingerprints of these processes and showed that SD-208 had global effects on reversing TGFβ-induced genes involved in fibrosis, inflammation, cell proliferation, cytoskeletal organization, and apoptosis. These studies also revealed that although the p38 pathway may not be needed for appearance or disappearance of the myofibroblast, it can mediate a subset of inflammatory and fibrogenic events of the myofibroblast during the process of tissue repair and fibrosis. Our findings suggest that inhibitors such as SD-208 may be therapeutically useful in human interstitial lung diseases and pulmonary fibrosis.


American Journal of Respiratory Cell and Molecular Biology | 2010

Long-Term Cigarette Smoke Exposure in a Mouse Model of Ciliated Epithelial Cell Function

Samantha M. Simet; Joseph H. Sisson; Jacqueline A. Pavlik; Jane M. DeVasure; Craig Boyer; Xiangde Liu; Shin Kawasaki; John G. Sharp; Stephen I. Rennard; Todd A. Wyatt

Exposure to cigarette smoke is associated with airway epithelial mucus cell hyperplasia and a decrease in cilia and ciliated cells. Few models have addressed the long-term effects of chronic cigarette smoke exposure on ciliated epithelial cells. Our previous in vitro studies showed that cigarette smoke decreases ciliary beat frequency (CBF) via the activation of protein kinase C (PKC). We hypothesized that chronic cigarette smoke exposure in an in vivo model would decrease airway epithelial cell ciliary beating in a PKC-dependent manner. We exposed C57BL/6 mice to whole-body cigarette smoke 2 hours/day, 5 days/week for up to 1 year. Tracheal epithelial cell CBF and the number of motile cells were measured after necropsy in cut tracheal rings, using high-speed digital video microscopy. Tracheal epithelial PKC was assayed according to direct kinase activity. At 6 weeks and 3 months of smoke exposure, the baseline CBF was slightly elevated (~1 Hz) versus control mice, with no change in β-agonist-stimulated CBF between control mice and cigarette smoke-exposed mice. By 6 months of smoke exposure, the baseline CBF was significantly decreased (2-3 Hz) versus control mice, and a β-agonist failed to stimulate increased CBF. The loss of β-agonist-increased CBF continued at 9 months and 12 months of smoke exposure, and the baseline CBF was significantly decreased to less than one third of the control rate. In addition to CBF, ciliated cell numbers significantly decreased in response to smoke over time, with a significant loss of tracheal ciliated cells occurring between 6 and 12 months. In parallel with the slowing of CBF, significant PKC activation from cytosol to the membrane of tracheal epithelial cells was detected in mice exposed to smoke for 6-12 months.


Biochemical and Biophysical Research Communications | 2009

MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis.

Xiangde Liu; Amy Nelson; Xingqi Wang; Nobuhiro Kanaji; Miok Kim; Tadashi Sato; Masanori Nakanishi; Yingji Li; Jianhong Sun; Joel Michalski; Amol Patil; Hesham Basma; Stephen I. Rennard

MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-beta1 plus cytomix (a mixture of IL-1beta, IFN-gamma and TNF-alpha). TGF-beta1 plus cytomix (TCM) induced apoptosis in HBECs (3.4+/-0.6% of control vs 83.1+/-4.0% of TCM treated cells, p<0.01), and this was significantly blocked by the miRNA-146a mimic (8.8+/-1.5%, p<0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.


Cytoskeleton | 2008

Inflammatory cytokines augments TGF-β1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TβR-I

Xiangde Liu

Epithelial-mesenchymal transition (EMT) is believed to play an important role in fibrosis and tumor invasion. EMT can be induced in vitro cell culture by various stimuli including growth factors and matrix metalloproteinases. In this study, we report that cytomix (a mixture of IL-1beta, TNF-alpha and IFN-gamma) significantly enhances TGF-beta1-induced EMT in A549 cells as evidenced by acquisition of fibroblast-like cell shape, loss of E-cadherin, and reorganization of F-actin. IL-1beta or TNF-alpha alone can also augment TGF-beta1-induced EMT. However, a combination of IL-1beta and TNF-alpha or the cytomix is more potent to induce EMT. Cytomix, but not individual cytokine of IL-1beta, TNF-alpha or IFN-gamma, significantly up-regulates expression of TGF-beta receptor type I (TbetaR-I). Suppression of TbetaR-I, Smad2 or Smad3 by siRNA partially blocks EMT induction by cytomix plus TGF-beta1, indicating cytomix augments TGF-beta1-induced EMT through enhancing TbetaR-I and Smad signaling. These results indicate that inflammatory cytokines together with TGF-beta1 may play an important role in the development of fibrosis and tumor progress via the mechanism of epithelial-mesenchymal transition.


Respiratory Research | 2008

NF-kappaB mediates the survival of human bronchial epithelial cells exposed to cigarette smoke extract

Xiangde Liu; Shinsaku Togo; Mona Al-Mugotir; Huijung Kim; Qiu Hong Fang; Tetsu Kobayashi; Xing Qi Wang; Lijun Mao; Peter B. Bitterman; Stephen I. Rennard

BackgroundWe have previously reported that low concentrations of cigarette smoke extract induce DNA damage without leading to apoptosis or necrosis in human bronchial epithelial cells (HBECs), and that IL-6/STAT3 signaling contributes to the cell survival. Since NF-κB is also involved in regulating apoptosis and cell survival, the current study was designed to investigate the role of NF-κB in mediating cell survival in response to cigarette smoke exposure in HBECs.MethodsBoth the pharmacologic inhibitor of NF-κB, curcumin, and RNA interference targeting p65 were used to block NF-κB signaling in HBECs. Apoptosis and cell survival were then assessed by various methods including COMET assay, LIVE/DEAD Cytotoxicity/Viability assay and colony formation assay.ResultsCigarette smoke extract (CSE) caused DNA damage and cell cycle arrest in S phase without leading to apoptosis in HBECs as evidenced by TUNEL assay, COMET assay and DNA content assay. CSE stimulated NF-κB -DNA binding activity and up-regulated Bcl-XL protein in HBECs. Inhibition of NF-κB by the pharmacologic inhibitor curcumin (20 μM) or suppression of p65 by siRNA resulted in a significant increase in cell death in response to cigarette smoke exposure. Furthermore, cells lacking p65 were incapable of forming cellular colonies when these cells were exposed to CSE, while they behaved normally in the regular culture medium.ConclusionThe current study demonstrates that CSE activates NF-κB and up-regulates Bcl-XL through NF-kB activation in HBECs, and that CSE induces cell death in cells lacking p65. These results suggest that activation of NF-κB regulates cell survival following DNA damage by cigarette smoke in human bronchial epithelial cells.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

PDE4 inhibitors roflumilast and rolipram augment PGE2 inhibition of TGF-β1-stimulated fibroblasts

Shinsaku Togo; Xiangde Liu; Xingqi Wang; Hisatoshi Sugiura; Koichiro Kamio; Shin Kawasaki; Tetsu Kobayashi; Ronald F. Ertl; Youngsoo Ahn; Olaf Holz; Helgo Magnussen; Karin Fredriksson; C. Magnus Sköld; Stephen I. Rennard

Fibrotic diseases are characterized by the accumulation of extracellular matrix together with distortion and disruption of tissue architecture. Phosphodiesterase (PDE)4 inhibitors, by preventing the breakdown of cAMP, can inhibit fibroblast functions and may be able to mitigate tissue remodeling. Transforming growth factor (TGF)-beta1, a mediator of fibrosis, can potentially modulate cAMP by altering PGE(2) metabolism. The present study assessed whether PDE4 inhibitors functionally antagonize the profibrotic activity of fibroblasts stimulated by TGF-beta1. The PDE4 inhibitors roflumilast and rolipram both inhibited fibroblast-mediated contraction of three-dimensional collagen gels and fibroblast chemotaxis toward fibronectin in the widely studied human fetal lung fibroblast strain HFL-1 and several strains of fibroblasts from adult human lung. Roflumilast was approximately 10-fold more potent than rolipram. There was a trend for PDE4 inhibitors to inhibit more in the presence of TGF-beta1 (0.05 < P < 0.08). The effect of the PDE4 inhibitors was mediated through cAMP-stimulated protein kinase A (PKA), although a PKA-independent effect on gel contraction was also observed. The effect of PDE4 inhibitors depended on fibroblast production of PGE(2) and TGF-beta1-induced PGE(2) production. PDE4 inhibitors together with TGF-beta1 resulted in augmented PGE(2) production together with increased expression of COX mRNA and protein. The present study supports the concept that PDE4 inhibitors may attenuate fibroblast activities that can lead to fibrosis and that PDE4 inhibitors may be particularly effective in the presence of TGF-beta1-induced fibroblast stimulation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels

Tetsu Kobayashi; Huijung Kim; Xiangde Liu; Hisatoshi Sugiura; Tadashi Kohyama; Qiuhong Fang; Fu Qiang Wen; Shinji Abe; Xingqi Wang; Jeffrey J. Atkinson; James Shipley; Robert M. Senior; Stephen I. Rennard

Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts.


Osteoporosis International | 2003

Cigarette smoke extract inhibits chemotaxis and collagen gel contraction mediated by human bone marrow osteoprogenitor cells and osteoblast-like cells

Xiangde Liu; Tadashi Kohyama; Tetsu Kobayashi; Shinji Abe; Hui Jung Kim; Elizabeth C. Reed; Stephen I. Rennard

Cell migration and matrix remodeling are key events in tissue repair and restructuring. Osteoblasts are responsible for the production of new bone matrix during bone remodeling. The activity of these cells can be modulated by a number of factors. The current study evaluated the hypothesis that cigarette smoke extract can alter repair and remodeling responses of human osteoprogenitor cells and osteoblast-like cells and, therefore, could explain one mechanism by which cigarette smoking leads to osteoporosis. Human osteoprogenitor cells were isolated from normal human bone marrow and maintained in culture under either control conditions or conditions that induced differentiation into osteoblast-like cells. Both cell types migrated toward fibronectin and PDGF-BB as chemoattractants. Neither responded to TGF-β1. The osteoprogenitor cells were more active in their chemotactic response. The chemotactic response of both cell types was inhibited by cigarette smoke extract in a concentration-dependent manner. Both cell types, when cultured in three-dimensional native collagen gels maintained in floating culture, induced contraction of their surrounding matrices. Contraction was augmented by serum, PDGF-BB, and TGF-β1. Osteoprogenitor cells were less active in inducing contraction than were osteoblast-like cells. Contraction of both cell types was inhibited by cigarette smoke extract. Cigarette smoke extract also inhibited the production of fibronectin by both cell types maintained in three-dimensional culture. Addition of exogenous fibronectin partially restored the ability of the cells to contract three-dimensional collagen gels. The current study demonstrates that cigarette smoke can interfere with the ability of bone cells to participate in repair and remodeling events. Such an effect may be one mechanism leading to the development of osteoporosis.

Collaboration


Dive into the Xiangde Liu's collaboration.

Top Co-Authors

Avatar

Stephen I. Rennard

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xingqi Wang

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amy Nelson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hesham Basma

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tetsu Kobayashi

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Joel Michalski

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maha Farid

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shinsaku Togo

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge