Xiangdong Le
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiangdong Le.
Oncogene | 2003
Daoyan Wei; Xiangdong Le; Leizhen Zheng; Liwei Wang; Jennifer A. Frey; Allen C. Gao; Zhihai Peng; Suyun Huang; Henry Q. Xiong; James L. Abbruzzese; Keping Xie
Expression of vascular endothelial growth factor (VEGF), a key angiogenic protein, has been linked with pancreatic cancer progression. However, the molecular basis for VEGF overexpression remains unclear. Immunohistochemical studies have indicated that VEGF overexpression coincides with elevated Stat3 activation in human pancreatic cancer specimens. In our study, more than 80% of the human pancreatic cancer cell lines used exhibited constitutively activated Stat3, with Stat3 activation correlated with the VEGF expression level. Blockade of activated Stat3 via ectopic expression of dominant-negative Stat3 significantly suppressed VEGF expression, angiogenesis, tumor growth, and metastasis in vivo. Furthermore, constitutively activated Stat3 directly activated the VEGF promoter, whereas dominant-negative Stat3 inhibited the VEGF promoter. A putative Stat3-responsive element on the VEGF promoter was identified using a protein–DNA binding assay and confirmed using a promoter mutagenesis assay. These results indicate that Stat3 directly regulates VEGF expression and hence angiogenesis, growth, and metastasis of human pancreatic cancer, suggesting that Stat3 signaling may be targeted for treatment of pancreatic cancer.
Oncogene | 2001
Qian Shi; Xiangdong Le; Bailiang Wang; James L. Abbruzzese; Qinghua Xiong; Yanjuan He; Keping Xie
The influence of acidosis on the expression of the vascular endothelial growth factor (VEGF) gene was determined. FG human pancreatic adenocarcinoma cells were incubated for various time periods in media at a physiologically relevant pH level (6.7–7.4). The expression of VEGF mRNA and protein secretion was inversely correlated with pH in a pH- and time-dependent manner. Transient acidosis also activated the VEGF promoter/enhancer luciferase reporter, which was consistent with an increased VEGF gene transcription rate and VEGF mRNA half-life. These data indicated that acidosis transcriptionally and posttranscriptionally regulates VEGF expression, suggesting that an acidic tumor microenvironment contributes to tumor angiogenesis and progression.
Cancer Research | 2009
Qiang Li; Nu Zhang; Zhiliang Jia; Xiangdong Le; Bingbing Dai; Daoyan Wei; Suyun Huang; Dongfeng Tan; Keping Xie
The mammalian forkhead box (Fox) transcription factor FoxM1b is implicated in tumorigenesis. However, the presence of expression and role of FoxM1b in gastric cancer remain unknown. Therefore, we investigated FoxM1b expression in 86 cases of primary gastric cancer and 57 normal gastric tissue specimens. We further investigated the underlying mechanisms of altered FoxM1b expression in and the effect of this altered expression on gastric cancer growth and metastasis using in vitro and animal models of gastric cancer. We found weak expression of FoxM1b protein in the mucous neck region of gastric mucosa, whereas we observed strong staining for FoxM1b in tumor cell nuclei in various gastric tumors and lymph node metastases. A Cox proportional hazards model revealed that FoxM1b expression was an independent prognostic factor in multivariate analysis (P < 0.001). Experimentally, overexpression of FoxM1b by gene transfer significantly promoted the growth and metastasis of gastric cancer cells in orthotopic mouse models, whereas knockdown of FoxM1b expression by small interfering RNA did the opposite. Promotion of gastric tumorigenesis by FoxM1b directly and significantly correlated with transactivation of vascular endothelial growth factor expression and elevation of angiogenesis. Given the importance of FoxM1b to regulation of the expression of genes key to cancer biology overall, dysregulated expression and activation of FoxM1b may play important roles in gastric cancer development and progression.
Cancer Research | 2008
Daoyan Wei; Masahsi Kanai; Zhiliang Jia; Xiangdong Le; Keping Xie
The zinc finger transcription factor Krüppel-like factor 4 (KLF4) has been implicated in both tumor suppression and progression. However, its function in pancreatic cancer has not been well characterized. Here, we show that pancreatic cancer cell lines expressed various levels of KLF4 RNA and protein. Ectopic expression of KLF4 by FG and BxPC-3 pancreatic cancer cells resulted in cell cycle arrest and marked inhibition of cell growth in vitro and attenuation of tumor growth and metastasis in an orthotopic mouse model. Overexpression of KLF4 also led to significant induction of p27(Kip1) expression, at both the RNA and protein levels, in a dose- and time-dependent manner, indicating that KLF4 transcriptionally regulates the expression of p27(Kip1). Chromatin immunoprecipitation assays consistently showed that KLF4 protein physically interacts with the p27(Kip1) promoter. Promoter deletion and point mutation analyses indicated that a region between nucleotides -435 and -60 of the p27(Kip1) promoter and intact of the three KLF4-binding sites within that region were required for the full induction of p27(Kip1) promoter activity by KLF4. Our findings suggest that KLF4 transactivates p27(Kip1) expression and inhibits the growth and metastasis of human pancreatic cancer.
Journal of Interferon and Cytokine Research | 1999
Qian Shi; Xiangdong Le; James L. Abbruzzese; Bailiang Wang; Naofumi Mujaida; Kouji Matsushima; Suyun Huang; Qinghua Xiong; Keping Xie
The expression of interleukin-8 (IL-8) has been shown to play an important role in the growth and metastasis of human pancreatic cancer. In the present study, we investigated the regulation of IL-8 gene expression by hypoxic environments. Exposure of the human pancreatic cancer cells COLO357 and FG to hypoxia in culture resulted in a time-dependent increase in steady-state levels of IL-8 mRNA and IL-8 protein secretion. The induction of IL-8 expression was correlated with transcriptional activation of the IL-8 gene. Deletion and point mutation analyses of the IL-8 promoter revealed that both AP-1 and NF-kappaB binding sites were necessary for IL-8 induction by hypoxia. Consistently, hypoxia induced both AP-1 and NF-kappaB activity. These data suggest that hypoxic environments upregulate the IL-8 gene via cooperation of NF-kappaB and AP-1 and contribute to the progression and metastasis of human pancreatic cancer.
Cancer Research | 2005
Daoyan Wei; Weida Gong; Sang C. Oh; Qiang Li; Won Dong Kim; Liwei Wang; Xiangdong Le; James C. Yao; Tsung T. Wu; Suyun Huang; Keping Xie
Identification of precise prognostic marker and effective therapeutic target is pivotal in the treatment of gastric cancer. In the present study, we determined the level of RUNX3 expression in gastric cancer cells and gastric cancer specimens and the impact of its alteration on cancer biology and clinical outcome. There was a loss or substantial decrease of RUNX3 protein expression in 86 cases of gastric tumors as compared with that in normal gastric mucosa (P < 0.0001), which was significantly associated with inferior survival duration (P = 0.0005). In a Cox proportional hazards model, RUNX3 expression independently predicted better survival (P = 0.036). Moreover, various human gastric cancer cell lines also exhibited loss or drastic decrease of RUNX3 expression. Enforced restoration of RUNX3 expression led to down-regulation of cyclin D1 but to up-regulation of p27, caspase 3, 7, and 8 expression, cell cycle arrest, and apoptosis in vitro, and dramatic attenuation of tumor growth and abrogation of metastasis in animal models. Therefore, we offered both clinical and mechanistic evidence that RUNX3 was an independent prognostic factor and a potential therapeutic target for gastric cancer.
Cancer Research | 2012
Chen Huang; Zhengjun Qiu; Liwei Wang; Zhihai Peng; Zhiliang Jia; Craig D. Logsdon; Xiangdong Le; Daoyan Wei; Suyun Huang; Keping Xie
Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its precise functional roles and regulation remain unclear. In this study, we determined the oncogenic function of Cav-1 in preclinical models of pancreatic cancer and in human tissue specimens. Cav-1 expression levels correlated with metastatic potential and epithelial-mesenchymal transition (EMT) in both mouse and human pancreatic cancer cells. Elevated levels in cells promoted EMT, migration, invasion, and metastasis in animal models, whereas RNA interference (RNAi)-mediated knockdown inhibited these processes. We determined that levels of Cav-1 and the Forkhead transcription factor FoxM1 correlated directly in pancreatic cancer cells and tumor tissues. Enforced expression of FoxM1 increased Cav-1 levels, whereas RNAi-mediated knockdown of FoxM1 had the opposite effect. FoxM1 directly bound to the promoter region of Cav-1 gene and positively transactivated its activity. Collectively, our findings defined Cav-1 as an important downstream oncogenic target of FoxM1, suggesting that dysregulated signaling of this novel FoxM1-Cav-1 pathway promotes pancreatic cancer development and progression.
Clinical Cancer Research | 2006
Masashi Kanai; Daoyan Wei; Qiang Li; Zhiliang Jia; Jaffer A. Ajani; Xiangdong Le; James C. Yao; Keping Xie
Purpose: Increasing evidence indicates that the transcription factor, Sp1, regulates the expression of multiple genes involved in tumor development and progression. We have recently reported that Sp1 overexpression is directly correlated with the angiogenic potential of and poor prognosis for human gastric cancer. However, the underlying mechanisms that result in Sp1 overexpression remain unclear. Experimental Design: The expression of Sp1 and Krüppel-like factor 4 (KLF4), a potential tumor suppressor gene, in gastric cancer tissue was analyzed by immunohistochemistry and Western blot analysis. Alterations of Sp1 and KLF4 expression were achieved by gene transfer and verified by Northern and Western blot analyses. Furthermore, Sp1 promoter activity assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay were done to identify the KLF4 binding sites on the Sp1 promoter. Results: Mutually exclusive expression of Sp1 and KLF4 was evident in gastric cancer and noncancerous tissue. Specifically, strong Sp1 expression but loss of KLF4 expression was found in cancer tissue, whereas the adjacent noncancerous tissue showed negative Sp1 expression but strong KLF4 expression. Enforced KLF4 expression repressed Sp1 expression at the promoter activity, mRNA, and protein levels. Moreover, a region within the proximal Sp1 promoter was identified to have overlapping KLF4- and Sp1-binding sites, to which KLF4 and Sp1 compete for binding. Sp1 positively regulated its own promoter, whereas KLF4 did the opposite. Conclusions: Our data suggests that disruption of KLF4-mediated negative regulation contributes to the molecular events of Sp1 overexpression and to the development and progression of human gastric cancer.
Journal of Interferon and Cytokine Research | 2000
Xiangdong Le; Qian Shi; Bailiang Wang; Qinghua Xiong; Chaonan Qian; Zhihai Peng; Xiang-Cheng Li; Huamei Tang; James L. Abbruzzese; Keping Xie
Recent studies have shown that interleukin-8 (IL-8) plays an important role in the growth and metastasis of human pancreatic cancer. In the present study, we determined the molecular regulation of constitutive IL-8 expression in human pancreatic cancer cells. Various human pancreatic cancer cell lines were incubated in vitro. Sixty-seven percent of the cell lines constitutively secreted high levels of IL-8, as determined using enzyme-linked immunosorbent assay. Consistently, these cells constitutively expressed high levels of IL-8 mRNA, as determined using Northern blot analysis. To determine the mechanisms of the high steady-state levels of IL-8 mRNA, the IL-8 half-life and transcription rate were measured. There was no significant difference in IL-8 half-life between cells expressing high and low levels of IL-8. However, higher transcription rates and increased IL-8 promoter activity were observed in the cells constitutively expressing high levels of IL-8. Detailed IL-8 promoter analysis using deletion mutation revealed that the region from -85 to -133 bp was essential for the constitutive IL-8 promoter activity. Also, point-mutation analysis indicated that mutation of NF-kappaB, AP-1, or NF-IL-6 binding sites significantly reduced or eliminated the constitutive IL-8 promoter activity. Consistent with the constitutive IL-8 transcription activity, high levels of constitutive NF-kappaB and AP-1 activity were detected in the cells overexpressing IL-8, as determined using electrophoretic mobility shift assay. In addition, transfection of a dominant-negative I-kappaBalpha expression vector (I-kappaBalphaM) inhibited constitutive NF-kappaB activity and IL-8 expression in pancreatic cancer cells. Collectively, our data demonstrated that constitutive NF-kappaB and AP-1 activation contributes to the overexpression of IL-8, which in turn plays an important role in tumor angiogenesis and contributes to the aggressive biology of human pancreatic cancer.
Cancer | 2007
Ping Yuan; Liwei Wang; Daoyan Wei; Jun Zhang; Zhiliang Jia; Qiang Li; Xiangdong Le; Huamin Wang; James C. Yao; Keping Xie
Human pancreatic cancer over expresses the transcription factor Sp1. However, the role of Sp1 in pancreatic cancer angiogenesis and its use as target for antiangiogenic therapy remain unexplored.