Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianghe Yan is active.

Publication


Featured researches published by Xianghe Yan.


Annual Review of Food Science and Technology - (new in 2010) | 2012

Novel Natural Food Antimicrobials

Vijay K. Juneja; Hari P. Dwivedi; Xianghe Yan

Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.


Foodborne Pathogens and Disease | 2011

Detection by Multiplex Real-Time Polymerase Chain Reaction Assays and Isolation of Shiga Toxin–Producing Escherichia coli Serogroups O26, O45, O103, O111, O121, and O145 in Ground Beef

Pina M. Fratamico; Lori K. Bagi; William C. Cray; Neelam Narang; Xianghe Yan; Marjorie B. Medina; Yanhong Liu

Six Shiga toxin-producing Escherichia coli (STEC) serogroups, which include O26, O45, O103, O111, O121, and O145, are responsible for the majority of non-O157 STEC infections in the United States, representing a growing public health concern. Cattle and other ruminants are reservoirs for these pathogens; thus, food of bovine origin may be a vehicle for infection with non-O157 STEC. Methods for detection of these pathogens in animal reservoirs and in food are needed to determine their prevalence and to develop intervention strategies. This study describes a method for detection of non-O157 STEC in ground beef, consisting of enrichment in modified tryptic soy broth at 42°C, followed by real-time multiplex polymerase chain reaction (PCR) assays targeting stx(1), stx(2), and genes in the O-antigen gene clusters of the six serogroups, [corrected] and then immunomagnetic separation (IMS) followed by plating onto Rainbow® Agar O157 and PCR assays for confirmation of isolates. All ground beef samples artificially inoculated with 1-2 and 10-20 CFU/25 g of ground beef consistently gave positive results for all of the target genes, including the internal amplification control using the multiplex real-time PCR assays after enrichment in modified tryptic soy broth for a total of 24 h (6 h at 37°C and 18 h at 42°C). The detection limit of the real-time multiplex PCR assays was ∼50 CFU per PCR. IMS for O26, O103, O111, and O145 was performed with commercially available magnetic beads, and the IMS beads for O45 and O121 were prepared using polyclonal antiserum against these serogroups. A large percentage of the presumptive colonies of each serogroup picked from Rainbow Agar O157 were confirmed as the respective serogroups; however, the percent recovery of STEC O111 was somewhat lower than that of the other serogroups. This work provides a method for detection and isolation in ground beef and potentially other foods of non-O157 STEC of major public health concern.


Foodborne Pathogens and Disease | 2011

Eavesdropping by bacteria: the role of SdiA in Escherichia coli and Salmonella enterica serovar Typhimurium quorum sensing.

James L. Smith; Pina M. Fratamico; Xianghe Yan

Many gram-negative bacteria utilize N-acyl-L-homoserine lactones (AHLs) to bind to transcriptional regulators leading to activation or repression of target genes. Escherichia coli and Salmonella enterica do not synthesize AHLs but do contain the AHL receptor, SdiA. Studies reveal that SdiA can bind AHLs produced by other bacterial species and thereby allow E. coli and S. enterica to regulate gene transcription. The Salmonella sdiA gene regulates the rck gene, which mediates Salmonella adhesion and invasion of epithelial cells and the resistance of the organism to complement. In E. coli, there is some evidence that SdiA may regulate genes associated with acid resistance, virulence, motility, biofilm formation, and autoinducer-2 transport and processing. However, there is a lack of information concerning the role of SdiA in regulating growth and survival of E. coli and Salmonella in food environments, and therefore studies in this area are needed.


PLOS ONE | 2016

Comparison of O-Antigen Gene Clusters of All O-Serogroups of Escherichia coli and Proposal for Adopting a New Nomenclature for O-Typing

Chitrita DebRoy; Pina M. Fratamico; Xianghe Yan; GianMarco Baranzoni; Yanhong Liu; David S. Needleman; Robert S. Tebbs; Catherine O'connell; Adam F. Allred; Michelle Swimley; Michael M. Mwangi; Vivek Kapur; Juan Antonio Raygoza Garay; Elisabeth Roberts; Robab Katani

Escherichia coli strains are classified based on O-antigens that are components of the lipopolysaccharide (LPS) in the cell envelope. O-antigens are important virulence factors, targets of both the innate and adaptive immune system, and play a role in host-pathogen interactions. Because they are highly immunogenic and display antigenic specificity unique for each strain, O-antigens are the biomarkers for designating O-types. Immunologically, 185 O-serogroups and 11 OX-groups exist for classification. Conventional serotyping for O-typing entails agglutination reactions between the O-antigen and antisera generated against each O-group. The procedure is labor intensive, not always accurate, and exhibits equivocal results. In this report, we present the sequences of 71 O-antigen gene clusters (O-AGC) and a comparison of all 196 O- and OX-groups. Many of the designated O-types, applied for classification over several decades, exhibited similar nucleotide sequences of the O-AGCs and cross-reacted serologically. Some O-AGCs carried insertion sequences and others had only a few nucleotide differences between them. Thus, based on these findings, it is proposed that several of the E. coli O-groups may be merged. Knowledge of the O-AGC sequences facilitates the development of molecular diagnostic platforms that are rapid, accurate, and reliable that can replace conventional serotyping. Additionally, with the scientific knowledge presented, new frontiers in the discovery of biomarkers, understanding the roles of O-antigens in the innate and adaptive immune system and pathogenesis, the development of glycoconjugate vaccines, and other investigations, can be explored.


International Journal of Medical Microbiology | 2011

The complete DNA sequence and analysis of the virulence plasmid and of five additional plasmids carried by Shiga toxin-producing Escherichia coli O26:H11 strain H30.

Pina M. Fratamico; Xianghe Yan; Alfredo Caprioli; Giuseppina Esposito; David S. Needleman; Tiziana Pepe; Rosangela Tozzoli; Maria Luisa Cortesi; Stefano Morabito

Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroup O26 have been associated with sporadic cases and outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. In addition to chromosomal virulence genes, STEC strains usually harbor a large plasmid that carries genes associated with pathogenicity. The complete nucleotide sequence and genetic organization of 6 plasmids carried by STEC O26:H11 strain H30 were determined. The large virulence plasmid (pO26-Vir) was approximately 168 kb in size and contained 196 open reading frames (ORFs). pO26-Vir possesses a mosaic structure and shows similarity to the virulence plasmids in locus of enterocyte effacement (LEE)-negative STEC O113:H21 EH41 (pO113), in E. coli clinical strain C1096 (pSERB1), and in E. coli O157:H7 RIMD 0509952 (pO157). Plasmid pO26-Vir shares several highly conserved regions with pO157 and carries important virulence genes, including toxB, katP, espP, and the hly gene cluster. In addition, pO26-Vir possesses genes encoding for type IV pili (pilL-V). The second largest plasmid, pO26-L (73 kb) contains 101 ORFs. pO26-L carries the tetracycline resistance gene and has regions that show similarity to the E. coli conjugative resistance plasmid NR1. The third largest plasmid, pO26-S4 (5.8 kb), is homologous to the ColE2 colicinogenic plasmid that encodes for colicin E2. The remaining 3 plasmids, pO26-S1 (1.5 kb), pO26-S2 (3.1 kb), and pO26-S3 (4.2 kb), carry very little genetic information except for putative proteins involved in plasmid replication and DNA maintenance. The data presented underscore the diversity among the STEC virulence plasmids and provide insights into the evolution of these plasmids in STEC strains that cause serious human illness.


Journal of Food Science | 2011

Differential Gene Expression of E. coli O157:H7 in Ground Beef Extract Compared to Tryptic Soy Broth

Pina M. Fratamico; Siyun Wang; Xianghe Yan; Wei Zhang; Yuesheng Li

E. coli O157:H7 is an important foodborne pathogen, and ground beef is a common vehicle of infection. DNA microarrays have been used for transcriptomic studies of E. coli O157:H7 using laboratory media; however, analysis of gene expression in complex matrices such as food are lacking. This study compared gene expression profiles of E. coli O157:H7 Sakai strain in raw ground beef extract (GBE) and tryptic soy broth (TSB). Total RNA was isolated from GBE and TSB after 2 h of incubation with E. coli O157:H7. Following reverse transcription (RT) of the RNA, labeled cDNA was hybridized to microarrays representing 9608 open reading frames (Operon; Genome Array-Ready Oligo Set) corresponding to 4 genomes of E. coli strains and 3 plasmids. There were 74 up-regulated (genes involved in protein and polysaccharide biosynthesis, transcription factors, membrane transport proteins, and acid shock proteins) and 54 down-regulated (encoding proteins for energy metabolism, biosynthesis of cofactors, transporters of small molecules, and transcription factors and enzymes responsible for protein degradation) genes in E. coli O157:H7 grown in GBE compared to TSB, respectively. Furthermore, compared to incubation in TSB, E. coli O157:H7 incubated in GBE for 2 h showed significantly increased survival when exposed to synthetic gastric fluid, pH 1.5. This study demonstrated that microarray analyses can be performed using complex food matrices, and gene expression of E. coli O157:H7 differs in TSB compared to GBE. The information will be useful for identification of genes that can be employed as potential targets for interventions to control E. coli O157:H7.


PLOS ONE | 2013

Phenotypic and Genotypic Characterization of Biofilm Forming Capabilities in Non-O157 Shiga Toxin-Producing Escherichia coli Strains

Chin-Yi Chen; Christopher S. Hofmann; Bryan J. Cottrell; Terence P. Strobaugh; George C. Paoli; Ly-Huong Nguyen; Xianghe Yan; Gaylen A. Uhlich

The biofilm life style helps bacteria resist oxidative stress, desiccation, antibiotic treatment, and starvation. Biofilm formation involves a complex regulatory gene network controlled by various environmental signals. It was previously shown that prophage insertions in mlrA and heterogeneous mutations in rpoS constituted major obstacles limiting biofilm formation and the expression of extracellular curli fibers in strains of Escherichia coli serotype O157:H7. The purpose of this study was to test strains from other important serotypes of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O113, O121, and O145) for similar regulatory restrictions. In a small but diverse collection of biofilm-forming and non-forming strains, mlrA prophage insertions were identified in only 4 of the 19 strains (serotypes O103, O113, and O145). Only the STEC O103 and O113 strains could be complemented by a trans-copy of mlrA to restore curli production and Congo red (CR) dye affinity. RpoS mutations were found in 5 strains (4 serotypes), each with low CR affinity, and the defects were moderately restored by a wild-type copy of rpoS in 2 of the 3 strains attempted. Fourteen strains in this study showed no or weak biofilm formation, of which 9 could be explained by prophage insertions or rpoS mutations. However, each of the remaining five biofilm-deficient strains, as well as the two O145 strains that could not be complemented by mlrA, showed complete or nearly complete lack of motility. This study indicates that mlrA prophage insertions and rpoS mutations do limit biofilm and curli expression in the non-serotype O157:H7 STEC but prophage insertions may not be as common as in serotype O157:H7 strains. The results also suggest that lack of motility provides a third major factor limiting biofilm formation in the non-O157:H7 STEC. Understanding biofilm regulatory mechanisms will prove beneficial in reducing pathogen survival and enhancing food safety.


Biosensors | 2015

Escherichia coli O-Antigen Gene Clusters of Serogroups O62, O68, O131, O140, O142, and O163: DNA Sequences and Similarity between O62 and O68, and PCR-Based Serogrouping.

Yanhong Liu; Xianghe Yan; Chitrita DebRoy; Pina M. Fratamico; David Needleman; Robert W. Li; Wei Wang; Liliana Losada; Lauren M. Brinkac; Diana Radune; Magaly Toro; Narasimha V. Hegde; Jianghong Meng

The DNA sequence of the O-antigen gene clusters of Escherichia coli serogroups O62, O68, O131, O140, O142, and O163 was determined, and primers based on the wzx (O-antigen flippase) and/or wzy (O-antigen polymerase) genes within the O-antigen gene clusters were designed and used in PCR assays to identify each serogroup. Specificity was tested with E. coli reference strains, field isolates belonging to the target serogroups, and non-E. coli bacteria. The PCR assays were highly specific for the respective serogroups; however, the PCR assay targeting the O62 wzx gene reacted positively with strains belonging to E. coli O68, which was determined by serotyping. Analysis of the O-antigen gene cluster sequences of serogroups O62 and O68 reference strains showed that they were 94% identical at the nucleotide level, although O62 contained an insertion sequence (IS) element located between the rmlA and rmlC genes within the O-antigen gene cluster. A PCR assay targeting the rmlA and rmlC genes flanking the IS element was used to differentiate O62 and O68 serogroups. The PCR assays developed in this study can be used for the detection and identification of E. coli O62/O68, O131, O140, O142, and O163 strains isolated from different sources.


Data in Brief | 2018

Whole-genome sequence data and analysis of a Staphylococcus aureus strain SJTUF_J27 isolated from seaweed

Yanping Xie; Yiping He; Sandeep Ghatak; Peter L. Irwin; Xianghe Yan; Terence P. Strobaugh; Andrew G. Gehring

The complete genome sequence data of S. aureus SJTUF_J27 isolated from seaweed in China is reported here. The size of the genome is 2.8 Mbp with 32.9% G + C content, consisting of 2614 coding sequences and 77 RNAs. A number of virulence factors, including antimicrobial resistance genes (fluoroquinolone, beta-lactams, fosfomycin, mupirocin, trimethoprim, and aminocoumarin) and the egc enterotoxin cluster, were found in the genome. In addition, the genes encoding metal-binding proteins and associated heavy metal resistance were identified. Phylogenetic data analysis, based upon genome-wide single nucleotide polymorphisms (SNPs), and comparative genomic evaluation with BLAST Ring Image Generator (BRIG) were performed for SJTUF_J27 and four S. aureus strains isolated from food. The completed genome data was deposited in NCBI׳s GenBank under the accession number CP019117, https://www.ncbi.nlm.nih.gov/nuccore/CP019117.


Genome Announcements | 2016

Whole-Genome Sequence of Escherichia coli Serotype O157:H7 Strain EDL932 (ATCC 43894)

Gaylen A. Uhlich; George C. Paoli; Chin-Yi Chen; Bryan J. Cottrell; Xinmin Zhang; Xianghe Yan

ABSTRACT The genome sequence of Escherichia coli serotype O157:H7 EDL933, a ground beef isolate from a 1983 hemorrhagic colitis outbreak, is a standard reference for comparative genomic studies of Shiga toxin-producing E. coli strains. Here, we report the genome sequence of a patient stool isolate from that outbreak, strain EDL932.

Collaboration


Dive into the Xianghe Yan's collaboration.

Top Co-Authors

Avatar

Pina M. Fratamico

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Chin-Yi Chen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yanhong Liu

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Chitrita DebRoy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

David Needleman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

David S. Needleman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

George C. Paoli

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Vijay K. Juneja

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Bryan J. Cottrell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Charlene R. Jackson

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge