Xianghong Ma
Aston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xianghong Ma.
Expert Systems With Applications | 2015
Cholsok Yu; Jianhong Yang; Debin Yang; Xianghong Ma; Hyonchun Min
New concepts of supporting probability function and its distance are proposed.A novel combination method based on supporting probability distance is proposed.The new distance is a better measure for conflict information containing non-singleton elements.The proposed method can obtain more reasonable result than that of the pignistic distance method. To avoid counter-intuitive result of classical Dempsters combination rule when dealing with highly conflict information, many improved combination methods have been developed through modifying the basic probability assignments (BPAs) of bodies of evidence (BOEs) by using a certain measure of the degree of conflict or uncertain information, such as Jousselmes distance, the pignistic probability distance and the ambiguity measure. However, if BOEs contain some non-singleton elements and the differences among their BPAs are larger than 0.5, the current conflict measure methods have limitations in describing the interrelationship among the conflict BOEs and may even lead to wrong combination results. In order to solve this problem, a new distance function, which is called supporting probability distance, is proposed to characterize the differences among BOEs. With the new distance, the information of how much a focal element is supported by the other focal elements in BOEs can be given. Also, a new combination rule based on the supporting probability distance is proposed for the combination of the conflicting evidences. The credibility and the discounting factor of each BOE are generated by the supporting probability distance and the weighted BOEs are combined directly using Dempsters rules. Analytical results of numerical examples show that the new distance has a better capability of describing the interrelationships among BOEs, especially for the highly conflicting BOEs containing non-singleton elements and the proposed new combination method has better applicability and effectiveness compared with the existing methods.
Annals of The Royal College of Surgeons of England | 2008
Paul S. Slack; Chris Coulson; Xianghong Ma; K. Webster; Dw Proops
INTRODUCTION A study was completed to determine if operating has an effect on a surgeons muscular fatigue. SUBJECTS AND METHODS Six head and neck surgery consultants, two ENT registrars, 20 normal controls from two tertiary referral centres in the West Midlands participated in the study. Electromyography (EMG) measurements were taken throughout a day of operating and fatigue indices were compared to controls performing desk work. RESULTS The percentage changes in mean frequency of muscular contractions were examined; there was no significant difference in fatigue levels between consultants and registrars. Operating led to an increase in fatigue in all subjects, compared to no increase in controls performing desk work. It was also found that the brachioradialis muscle is used more than the mid-deltoid muscle and, hence, fatigues at a faster rate. CONCLUSIONS Surgeons should be aware that their muscular fatigue levels will increase as an operation progresses; therefore, if possible, more complex parts of the operation should be performed as early as possible, or, in the case of a very long operation, a change in surgeon may be necessary.
European Archives of Oto-rhino-laryngology | 2009
Paul S. Slack; Chris Coulson; Xianghong Ma; P. Pracy; S. Parmar; K. Webster
The objective of this prospective study, performed at two tertiary referral centers in the West Midlands, was to determine if operating has an effect on a surgeon’s baseline tremor. A total of 10 head and neck surgery consultants, 2 ENT registrars and 19 normal controls participated in the study. The interventions were preoperative and postoperative tremor measurements for surgeons and pre and post-days’ desk work for controls, with the main outcomes measure being the percentage change in tremor. No difference in baseline tremor was determined between consultants and registrars. Operating led to an increase in hand tremor in all subjects. Tremor increases in all subjects were directly proportional to the length of the time spent in operating. Operating compared to a normal day’s desk work increased tremor by a factor of 8.4. In conclusion, surgeons should be aware that their tremor will increase as an operation progresses. More complex parts should be performed as early in the day as possible, or, in the case of a very long operation, a change of surgeons may occasionally be necessary.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 2009
Zhangming Wu; Xianghong Ma; Peter N. Brett; Jinwu Xu
This paper investigates the vibration characteristics of the coupling system of a microscale fluid-loaded rectangular isotropic plate attached to a uniformly distributed mass. Previous literature has, respectively, studied the changes in the plate vibration induced by an acoustic field or by the attached mass loading. This paper investigates the issue of involving these two types of loading simultaneously. Based on Lambs assumption of the fluid-loaded structure and the Rayleigh–Ritz energy method, this paper presents an analytical solution for the natural frequencies and mode shapes of the coupling system. Numerical results for microplates with different types of boundary conditions have also been obtained and compared with experimental and numerical results from previous literature. The theoretical model and novel analytical solution are of particular interest in the design of microplate-based biosensing devices.
Microsurgery | 2010
Chris Coulson; Paul S. Slack; Xianghong Ma
Background. Operative tremor can greatly influence the outcome of certain, precise, microsurgical operations. Reducing a surgeons tremor may not only improve the operative results but decrease the operative time. Previous studies have only measured uni or bi directional tremor and therefore have been unable to calculate both the overall tremor amplitude and the tremor reduction by resting the wrists. Materials and methods. We measured the tremor of 21 neurologically normal volunteers while performing a micromanipulation task, with and without wrist support. Measurements were acquired in three dimensions using three accelerometers attached to the hand, allowing an overall tremor amplitude to be calculated. Results. Resting the wrist on a gelled surface decreases an individuals tremor by a factor of 2.67 (P = 0). Conclusions. Supporting the wrists significantly decreases the amplitude of the tremor. Surgeons should consider using wrist supports when performing parts of operations which necessitate a high degree of accuracy.
PLOS ONE | 2015
Alan Karthikesalingam; Omneya Attallah; Xianghong Ma; Sandeep S. Bahia; Luke R. Thompson; Alberto Vidal-Diez; E. Choke; Matthew J. Bown; Robert D. Sayers; M.M. Thompson; Peter J. Holt
Background Lifelong surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms (AAA) is considered mandatory to detect potentially life-threatening endograft complications. A minority of patients require reintervention but cannot be predictively identified by existing methods. This study aimed to improve the prediction of endograft complications and mortality, through the application of machine-learning techniques. Methods Patients undergoing EVAR at 2 centres were studied from 2004-2010. Pre-operative aneurysm morphology was quantified and endograft complications were recorded up to 5 years following surgery. An artificial neural networks (ANN) approach was used to predict whether patients would be at low- or high-risk of endograft complications (aortic/limb) or mortality. Centre 1 data were used for training and centre 2 data for validation. ANN performance was assessed by Kaplan-Meier analysis to compare the incidence of aortic complications, limb complications, and mortality; in patients predicted to be low-risk, versus those predicted to be high-risk. Results 761 patients aged 75 +/- 7 years underwent EVAR. Mean follow-up was 36+/- 20 months. An ANN was created from morphological features including angulation/length/areas/diameters/volume/tortuosity of the aneurysm neck/sac/iliac segments. ANN models predicted endograft complications and mortality with excellent discrimination between a low-risk and high-risk group. In external validation, the 5-year rates of freedom from aortic complications, limb complications and mortality were 95.9% vs 67.9%; 99.3% vs 92.0%; and 87.9% vs 79.3% respectively (p<0.001) Conclusion This study presents ANN models that stratify the 5-year risk of endograft complications or mortality using routinely available pre-operative data.
PLOS ONE | 2014
Ali Al-Khattawi; Hamad Alyami; Bill Townsend; Xianghong Ma; Afzal-Ur-Rahman Mohammed
The work investigates the adhesive/cohesive molecular and physical interactions together with nanoscopic features of commonly used orally disintegrating tablet (ODT) excipients microcrystalline cellulose (MCC) and D-mannitol. This helps to elucidate the underlying physico-chemical and mechanical mechanisms responsible for powder densification and optimum product functionality. Atomic force microscopy (AFM) contact mode analysis was performed to measure nano-adhesion forces and surface energies between excipient-drug particles (6-10 different particles per each pair). Moreover, surface topography images (100 nm2–10 µm2) and roughness data were acquired from AFM tapping mode. AFM data were related to ODT macro/microscopic properties obtained from SEM, FTIR, XRD, thermal analysis using DSC and TGA, disintegration testing, Heckel and tabletability profiles. The study results showed a good association between the adhesive molecular and physical forces of paired particles and the resultant densification mechanisms responsible for mechanical strength of tablets. MCC micro roughness was 3 times that of D-mannitol which explains the high hardness of MCC ODTs due to mechanical interlocking. Hydrogen bonding between MCC particles could not be established from both AFM and FTIR solid state investigation. On the contrary, D-mannitol produced fragile ODTs due to fragmentation of surface crystallites during compression attained from its weak crystal structure. Furthermore, AFM analysis has shown the presence of extensive micro fibril structures inhabiting nano pores which further supports the use of MCC as a disintegrant. Overall, excipients (and model drugs) showed mechanistic behaviour on the nano/micro scale that could be related to the functionality of materials on the macro scale.
Journal of Analytical Atomic Spectrometry | 2015
Jianhong Yang; Cancan Yi; Jinwu Xu; Xianghong Ma
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.
Journal of Micromechanics and Microengineering | 2010
Zhangming Wu; Mike T. Wright; Xianghong Ma
An experimental testing system for the study of the dynamic behavior of fluid-loaded rectangular micromachined silicon plates is designed and presented in this paper. In this experimental system, the base-excitation technique combined with pseudo-random signal and cross-correlation analysis is applied to test fluid-loaded microstructures. Theoretical model is also derived to reveal the mechanism of such an experimental system in the application of testing fluid-loaded microstructures. The dynamic experiments cover a series of testings of various microplates with different boundary conditions and dimensions, both in air and immersed in water. This paper is the first that demonstrates the ability and performances of base excitation in the application of dynamic testing of microstructures that involves a natural fluid environment. Traditional modal analysis approaches are used to evaluate natural frequencies, modal damping and mode shapes from the experimental data. The obtained experimental results are discussed and compared with theoretical predictions. This research experimentally determines the dynamic characteristics of the fluid-loaded silicon microplates, which can contribute to the design of plate-based microsystems. The experimental system and testing approaches presented in this paper can be widely applied to the investigation of the dynamics of microstructures and nanostructures.
Measurement Science and Technology | 2007
Paul S. Slack; Xianghong Ma
This paper presents new methodologies for measuring the hand tremor of surgeons. A means to measure and evaluate the surgeon hand tremor in real time during operating practice can serve to assess the ergonomics of operating conditions. Tremor information is also important for determining surgical performance, particularly in microsurgical tasks. Micro-surgeons often work continuously for several hours with the most complex part occurring toward the end of the procedure. During these procedures the surgeon often uses a binocular microscope and is working at the threshold of perception and manual tool point control. The resulting performance is sensitive to hand tremor. In this paper, maximum tremor amplitude was determined by integrating the acceleration signals measured from three-axis piezoelectric accelerometers. New methods of removing the drift in the acceleration signals through empirical mode decomposition, and of determining the maximum tremor amplitude through proper orthogonal decomposition are presented. An experimental calibration demonstrates that the average error between the maximum tremor calculated by the proposed new method and the measured amplitude is below 5%. The paper also presents the results of the new techniques applied in the operating room in practice. Some of the tasks investigated focused on tool control in microsurgery.