Xiangjun Zhou
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiangjun Zhou.
The Plant Cell | 2006
Shan Lu; Joyce Van Eck; Xiangjun Zhou; Alex B. Lopez; Diana M. O'Halloran; Kelly M. Cosman; Brian J. Conlin; Dominick J. Paolillo; David F. Garvin; Julia Vrebalov; Leon V. Kochian; Hendrik Küpper; Elizabeth D. Earle; Jun Cao; Li Li
Despite recent progress in our understanding of carotenogenesis in plants, the mechanisms that govern overall carotenoid accumulation remain largely unknown. The Orange (Or) gene mutation in cauliflower (Brassica oleracea var botrytis) confers the accumulation of high levels of β-carotene in various tissues normally devoid of carotenoids. Using positional cloning, we isolated the gene representing Or and verified it by functional complementation in wild-type cauliflower. Or encodes a plastid-associated protein containing a DnaJ Cys-rich domain. The Or gene mutation is due to the insertion of a long terminal repeat retrotransposon in the Or allele. Or appears to be plant specific and is highly conserved among divergent plant species. Analyses of the gene, the gene product, and the cytological effects of the Or transgene suggest that the functional role of Or is associated with a cellular process that triggers the differentiation of proplastids or other noncolored plastids into chromoplasts for carotenoid accumulation. Moreover, we demonstrate that Or can be used as a novel genetic tool to induce carotenoid accumulation in a major staple food crop. We show here that controlling the formation of chromoplasts is an important mechanism by which carotenoid accumulation is regulated in plants.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Xiangjun Zhou; Ralf Welsch; Yong Yang; Daniel Álvarez; Matthias Riediger; Hui Yuan; Tara Fish; Jiping Liu; Theodore W. Thannhauser; Li Li
Significance Carotenoids are indispensable to plants and humans. Despite significant achievements in carotenoid research, we still lack the fundamental knowledge of the regulatory mechanisms underlying carotenogenesis in plants. Phytoene synthase (PSY) and ORANGE (OR) are the two key proteins for carotenoid biosynthesis and accumulation in plastids. This study shows that OR family proteins interact directly with PSY and function as the major regulators of active PSY protein abundance in mediating carotenoid biosynthesis. The findings establish posttranscriptional regulation of PSY as a novel way to control carotenoid biosynthesis in plants and provide strategies for crop nutritional quality improvement. Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in the carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control carotenoid biosynthesis and accumulation in plants. However, little is known about the mechanisms underlying their posttranscriptional regulation. Here we report that PSY and OR family proteins [Arabidopsis thaliana OR (AtOR) and AtOR-like] physically interacted with each other in plastids. We found that alteration of OR expression in Arabidopsis exerted minimal effect on PSY transcript abundance. However, overexpression of AtOR significantly increased the amount of enzymatically active PSY, whereas an ator ator-like double mutant exhibited a dramatically reduced PSY level. The results indicate that the OR proteins serve as the major posttranscriptional regulators of PSY. The ator or ator-like single mutant had little effect on PSY protein levels, which involves a compensatory mechanism and suggests partial functional redundancy. In addition, modification of PSY expression resulted in altered AtOR protein levels, corroborating a mutual regulation of PSY and OR. Carotenoid content showed a correlated change with OR-mediated PSY level, demonstrating the function of OR in controlling carotenoid biosynthesis by regulating PSY. Our findings reveal a novel mechanism by which carotenoid biosynthesis is controlled via posttranscriptional regulation of PSY in plants.
Plant Cell and Environment | 2011
Xiangjun Zhou; Ryan McQuinn; Zhangjun Fei; Anne-Marie A. Wolters; Joyce Van Eck; Charles R. Brown; James J. Giovannoni; Li Li
Potato (Solanum tuberosum L.) tubers contain a wide range of carotenoid contents. To decipher the key factors controlling carotenoid levels in tubers, four potato lines (Atlantic, Désirée, 91E22 and POR03) were examined by a combination of biochemical, molecular and genomics approaches. These lines contained incremental levels of carotenoids, which were found to be associated with enhanced capacity of carotenoid biosynthesis as evident from norflurazon treatment. Microarray analysis of high and low carotenoid lines (POR03 versus Atlantic) revealed 381 genes that showed significantly differential expression. The carotenoid metabolic pathway genes β-carotene hydroxylase 2 (BCH2) and β-carotene hydroxylase 1 (BCH1), along with zeaxanthin epoxidase (ZEP), and carotenoid cleavage dioxygenase 1A (CCD1A) were among the most highly differentially expressed genes. The transcript levels of BCH2 and BCH1 were lowest in Atlantic and highest in POR03, whereas those of ZEP and CCD1A were high in low carotenoid lines and low in high carotenoid lines. The high expression of BCH2 in POR03 line was associated with enhanced response to sugars. Our results indicate that high levels of carotenoid accumulation in potato tubers were due to an increased metabolic flux into carotenoid biosynthetic pathway, as well as the differential expression of carotenoid metabolic genes.
Plant Journal | 2015
Galil Tzuri; Xiangjun Zhou; Noam Chayut; Hui Yuan; Vitaly Portnoy; Ayala Meir; Uzi Sa'ar; Fabian Baumkoler; Michael Mazourek; Efraim Lewinsohn; Zhangjun Fei; Arthur A. Schaffer; Li Li; Joseph Burger; Nurit Katzir; Yaakov Tadmor
The flesh color of Cucumis melo (melon) is genetically determined, and can be white, light green or orange, with β-carotene being the predominant pigment. We associated carotenoid accumulation in melon fruit flesh with polymorphism within CmOr, a homolog of the cauliflower BoOr gene, and identified CmOr as the previously described gf locus in melon. CmOr was found to co-segregate with fruit flesh color, and presented two haplotypes (alleles) in a broad germplasm collection, one being associated with orange flesh and the second being associated with either white or green flesh. Allelic variation of CmOr does not affect its transcription or protein level. The variation also does not affect its plastid subcellular localization. Among the identified single nucleotide polymorphisms (SNPs) between CmOr alleles in orange versus green/white-flesh fruit, a single SNP causes a change of an evolutionarily highly conserved arginine to histidine in the CmOr protein. Functional analysis of CmOr haplotypes in an Arabidopsis callus system confirmed the ability of the CmOr orange haplotype to induce β-carotene accumulation. Site-directed mutagenesis of the CmOr green/white haplotype to change the CmOR arginine to histidine triggered β-carotene accumulation. The identification of the golden SNP in CmOr, which is responsible for the non-orange and orange melon fruit phenotypes, provides new tools for studying the Or mechanism of action, and suggests genome editing of the Or gene for nutritional biofortification of crops.
Plant Physiology | 2017
Noam Chayut; Hui Yuan; Shachar Ohali; Ayala Meir; Uzi Sa’ar; Galil Tzuri; Yi Zheng; Michael Mazourek; Shimon Gepstein; Xiangjun Zhou; Vitaly Portnoy; Efraim Lewinsohn; Arthur A. Schaffer; Nurit Katzir; Zhangjun Fei; Ralf Welsch; Li Li; Joseph Burger; Yaakov Tadmor
CmOr golden SNP dramatically affects carotenoid content and plastid fate in melon by inhibiting metabolism downstream of β-carotene. β-Carotene adds nutritious value and determines the color of many fruits, including melon (Cucumis melo). In melon mesocarp, β-carotene accumulation is governed by the Orange gene (CmOr) golden single-nucleotide polymorphism (SNP) through a yet to be discovered mechanism. In Arabidopsis (Arabidopsis thaliana), OR increases carotenoid levels by posttranscriptionally regulating phytoene synthase (PSY). Here, we identified a CmOr nonsense mutation (Cmor-lowβ) that lowered fruit β-carotene levels with impaired chromoplast biogenesis. Cmor-lowβ exerted a minimal effect on PSY transcripts but dramatically decreased PSY protein levels and enzymatic activity, leading to reduced carotenoid metabolic flux and accumulation. However, the golden SNP was discovered to not affect PSY protein levels and carotenoid metabolic flux in melon fruit, as shown by carotenoid and immunoblot analyses of selected melon genotypes and by using chemical pathway inhibitors. The high β-carotene accumulation in golden SNP melons was found to be due to a reduced further metabolism of β-carotene. This was revealed by genetic studies with double mutants including carotenoid isomerase (yofi), a carotenoid-isomerase nonsense mutant, which arrests the turnover of prolycopene. The yofi F2 segregants accumulated prolycopene independently of the golden SNP. Moreover, Cmor-lowβ was found to inhibit chromoplast formation and chloroplast disintegration in fruits from 30 d after anthesis until ripening, suggesting that CmOr regulates the chloroplast-to-chromoplast transition. Taken together, our results demonstrate that CmOr is required to achieve PSY protein levels to maintain carotenoid biosynthesis metabolic flux but that the mechanism of the CmOr golden SNP involves an inhibited metabolism downstream of β-carotene to dramatically affect both carotenoid content and plastid fate.
Plant Physiology | 2015
Hui Yuan; Katherine Owsiany; T.E. Sheeja; Xiangjun Zhou; Caroline Rodriguez; Yongxi Li; Ralf Welsch; Noam Chayut; Yong Yang; Theodore W. Thannhauser; Mandayam V. Parthasarathy; Qiang Xu; Xiuxin Deng; Zhangjun Fei; Ari Schaffer; Nurit Katzir; Joseph Burger; Yaakov Tadmor; Li Li
Function gain to promote carotenoid overaccumulation affects chromoplast biogenesis. Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation.
Biotechnology Annual Review | 2008
Xiangjun Zhou; Joyce Van Eck; Li Li
Carotenoids are a group of pigments that are essential to human diets. An increasing interest in carotenoids as a nutritional source of vitamin A and health-promoting compounds has prompted the recent progress in metabolic engineering of carotenogenesis in food crops. Current strategies have been mainly focused on manipulating genes encoding carotenogeic enzymes. In many cases, it is difficult to reach the desired levels of carotenoid enhancement. In this chapter, we briefly summarize the recent progress on our understanding of carotenoid biosynthesis. We describe the isolation of a novel gene, the Or gene, from a high-beta-carotene orange cauliflower mutant. The Or gene encodes a plastid-targeted protein containing a cysteine-rich zinc finger domain and appears to be plant-specific. The insertion of a copia-like LTR retrotransponson in the Or gene confers high levels of carotenoid accumulation in the normally low-pigmented tissues. Rather than directly regulating carotenoid biosynthesis, the Or gene controls carotenoid accumulation by inducing the formation of chromoplasts, which provide a metabolic sink to sequester and deposit carotenoids. Examination of the Or transgenic potato tubers confirms that the Or-induced carotenoid accumulation is associated with the formation of a metabolic sink. Thus, the Or gene offers a new molecular tool to complement current approaches for nutritional enhancement in agriculturally important crops.
New Phytologist | 2011
Xiangjun Zhou; Tian-Hu Sun; Ning Wang; Hong-Qing Ling; Shan Lu; Li Li
The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation.
Journal of Experimental Botany | 2017
Xiangjun Zhou; Manrong Zha; Jing Huang; Li Li; Muhammad Imran; Cankui Zhang
&NA; Phosphorus is an important macronutrient for plant growth, but often deficient in soil. To understand the molecular basis of the complex responses of potato (Solanum tuberosum L.) to phosphate (Pi) deficiency stress, the RNA‐Seq approach was taken to identify genes responding to Pi starvation in potato roots. A total of 359 differentially expressed genes were identified, among which the Solanum tuberosum transcription factor gene MYB44 (StMYB44) was found to be down‐regulated by Pi starvation. StMYB44 was ubiquitously expressed in potato tissues and organs, and StMYB44 protein was exclusively localized in the nucleus. Overexpression of StMYB44 in potato resulted in lower accumulation of Pi in shoots. Transcriptomic analysis indicated that the abundance of S. tuberosum PHOSPHATE1 (StPHO1), a Pi transport‐related gene, was reduced in StMYB44 overexpression lines. In contrast, knock‐out of StMYB44 by a CRISPR/Cas9 system failed to increase transcription of StPHO1. Moreover, StMYB44 was found to interact in the nucleus with AtWRKY6, a known Arabidopsis transcription factor directly regulating PHO1 expression, and StWRKY6, indicating that StMYB44 could be a member of the regulatory complex controlling transcription of StPHO1. Taken together, our study demonstrates that StMYB44 negatively regulates Pi transport in potato by suppressing StPHO1 expression.
BMC Plant Biology | 2011
Xiangjun Zhou; Zhangjun Fei; Theodore W. Thannhauser; Li Li
BackgroundChloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated.ResultsGreen cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light.ConclusionsThe genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.