Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangkun Li is active.

Publication


Featured researches published by Xiangkun Li.


Bioresource Technology | 2014

Transformation of dissolved organic matters in swine, cow and chicken manures during composting.

Ke Wang; Xiangkun Li; Chao He; Chia-Lung Chen; Jianwei Bai; Nanqi Ren; Jing-Yuan Wang

The changes of dissolved organic matters (DOMs) extracted from swine, cow and chicken manures were assessed by Fourier transform infrared, ultraviolet, gel permeation chromatography (GPC), excitation-emission-matrix fluorescence (EEM-FL), Biolog Eco and (1)H NMR during 60-day composting. Pumice was adopted to eliminate the disturbing of common organic bulking agents. The results showed chicken manure had the highest DOC, DTN (dissolved total nitrogen) and lowest DOC/DTN among the three manures; cow manure had the highest volatile solids, lowest DTN, slowest DOMs hydrolysis rate and the fastest bio-stabilization rate. (1)H NMR showed the decrease rates of OC band and saturated carbon chain were distinctly faster than that of olefinic and aromatic structures. The molecular size distribution of DOMs in the three manures was in the range of 1-10 kDa detected by GPC. Microbial carbon utilization capacity decreased in cow manure with composting time, but the contrast was observed in the chicken and swine manures.


Bioresource Technology | 2012

Biodiversity and quantification of functional bacteria in completely autotrophic nitrogen-removal over nitrite (CANON) process

Tao Liu; Dong Li; Huiping Zeng; Xiangkun Li; Taotao Zeng; Xiaoyan Chang; Yan’an Cai; Jie Zhang

The research was conducted to investigate the microbial diversity and population with the different concentration of NH(4)(+)-N in a biofilm reactor filled with volcanic filter for completely autotrophic nitrogen-removal over nitrite (CANON) process. The reactor had an excellent performance with the decreasing of NH(4)(+)-N concentration from 400 to 200 mg L(-1) while NH(4)(+)-N removal loading reduced at the NH(4)(+)-N concentration of 100 mg L(-1). Biodiversity analysis indicated that Nitrosomonas related aerobic ammonia oxidizing bacteria (AOB) and Planctomycetales-like anaerobic ammonia oxidizing (anammox) bacteria were dominant functional bacteria. Despite the different influent NH(4)(+)-N concentration, anammox bacteria had a low and stable biodiversity, which was not the same to AOB. With the concentration reduction of influent NH(4)(+)-N, the estimates of total bacteria population ranged between 2.29×10(11) and 1.44×10(12) copies mg(-1) total DNA, and the quantity of AOB decreased while anammox bacteria kept stable. The population of Nitrospira increased and little Nitrobacter was detected during the experiment.


Water Research | 2014

Performance and microbial community profiles in an anaerobic reactor treating with simulated PTA wastewater: from mesophilic to thermophilic temperature.

Xiangkun Li; Kai-Li Ma; Ling-Wei Meng; Jie Zhang; Ke Wang

Performance and microbial community profiles in a hybrid anaerobic reactor treating synthetic PTA wastewater (contained the major pollutants terephthalate and benzoate) were studied over 220 days from 33 °C to 52 °C. Results indicated that PTA treatment process was highly sensitive to temperature variations in terms of COD removal. Operation at 37 °C showed the best performance as well as the most diverse microbial community revealed by 16S rRNA gene clone library and T-RFLP (terminal restriction fragment length polymorphism). Finally, the anaerobic process achieved a total COD removal of 77.4%, 91.9%, 87.4% and 66.1% at 33, 37, 43 and 52 °C. While the corresponding TA removal were 77.6%, 94.0%, 89.1% and 60.8%, respectively. Sequence analyses revealed acetoclastic Methanosaeta was preponderant at 37 °C, while hydrogenotrophic genera including Methanobrevibacter and Methanofollis were more abundant at other temperatures. For bacterial community, 16 classes were identified. The largely existent Syntrophorhabdus members (belonging to δ-Proteobacteria) at 37 °C was likely to play an important role in mesophilic anaerobic wastewater treatment system contained terephthalate. Meanwhile, β-Proteobacteria seemed to be favored in an anaerobic system higher than 43 °C.


Bioresource Technology | 2014

Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater

Liu Yang; Xiangkun Li; Zhao-rui Chu; Yuhui Ren; Jie Zhang

A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings.


Bioresource Technology | 2013

Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China

Xiangkun Li; Zhao-rui Chu; Ya-jun Liu; Meng-ting Zhu; Liu Yang; Jie Zhang

In iron and manganese-containing groundwater treatment for drinking water production, biological filter is an effective process to remove such pollutants. Until now the exact microbial mechanism of iron and manganese removal, especially coupled with other pollutants, such as ammonia, has not been clearly understood. To assess this issue, the performance of a full-scale biofilter located in Harbin, China was monitored over four months. Microbial populations in the biofilter were investigated using T-RFLP and clone library technique. Results suggested that Gallionella, Leptothrix, Nitrospira, Hyphomicrobium and Pseudomonas are dominant in the biofilter and play major roles in the removal of iron, manganese and ammonia. The spatial distribution of microbial populations along the depth of the biofilter demonstrated the stratification of the removal of iron, manganese and ammonia. Additionally, the absence of ammonia-oxidizing bacteria in the biofilter implicated that ammonia-oxidizing archaea might be responsible for the oxidation of ammonia to nitrite.


Bioresource Technology | 2016

Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor.

Yuanyuan Zhao; Hee Deung Park; Jeong Hoon Park; Fushuang Zhang; Chen Chen; Xiangkun Li; Dan Zhao; Fangbo Zhao

The performance and microbial community profiles in a sequencing batch reactor (SBR) treating saline wastewater were studied over 300days from 0wt% to 3.0wt% salinity. The experimental results indicated that the activated sludge had high sensitivity to salinity variations in terms of pollutants removal and sedimentation. At 2.0wt% salinity, the system retained a good performance, and 95% removal rate of chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4(+)-N and total phosphorus (TP) could be achieved. Operation before addition salinity revealed the optimal performance and the most microbial diversity indicated by 16S rRNA gene clone library. Sequence analyses illustrated that Candidate_division_TM7 (TM7) was predominant at 2.0 wt% salinity; however, Actinobacteria was more abundant at 3.0wt% salinity.


Chemosphere | 2014

High-rate nitrogen removal and microbial community of an up-flow anammox reactor with ceramics as biomass carrier.

Yuhui Ren; Dong Li; Xiangkun Li; Liu Yang; An Ding; Jie Zhang

Nitrogen removal performance and responsible microbial community of anammox process at low temperatures, and long term effect of dissolved oxygen (DO) on the performance of anammox process were investigated in a biofilm reactor, which was operated at 33±1°C (159d) and 20±2°C (162d) with an influent DO concentration of 0.7-1.5mgL(-1). Nitrogen removal recovered to 70% after 2wk with the temperature drastically decreasing from 33±1°C to 20±2°C. At 20±2°C, the average effluent (NH4(+)-N+NO2(-)-N) concentration was 0.08±0.08mgL(-1) at a hydraulic retention time of 1.5h. A total nitrogen removal efficiency of the reactor of 1.0gNL(-1)d(-1) was obtained for up to one month while the nitrogen loading rate was 1.16gNL(-1)d(-1). Results of T-RFLP and 16S rRNA phylogenic analysis revealed that Candidatus Jettenia asiatica, as confirmed to adapt to low temperature, was considered to be responsible for the stable and high nitrogen removal performance.


Bioresource Technology | 2012

Distribution and genetic diversity of functional microorganisms in different CANON reactors

Tao Liu; Dong Li; Huiping Zeng; Xiangkun Li; Yuhai Liang; Xiaoyan Chang; Jie Zhang

Completely autotrophic nitrogen removal over nitrite (CANON) has been regarded as an efficient and economical process for nitrogen removal from wastewater. The distribution and genetic diversity of the functional microorganisms in five lab-scale CANON reactors have been investigated by using some molecular biology methods. Nitrosomonas-like aerobic ammonium oxidizing bacteria (AerAOB) and Candidatus Brocadia-related anaerobic ammonium oxidizing bacteria (AnAOB) were detected as predominant functional microbes in the five reactors while Nitrobacter-like nitrite oxidizing bacteria (NOB) existed only in the systems operated at ambient temperature. Communities of AerAOB and AnAOB were almost similar among the five reactors while the distribution of the functional microbes was either scattered or densely packed. Meanwhile, this study has demonstrated the feasibility of starting up CANON by inoculating conventional activated sludge in low ammonium content at ambient temperature.


Bioresource Technology | 2018

Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent

Ke Wang; Hailong Mao; Xiangkun Li

The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system.


Chemosphere | 2016

Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics.

Hexi Zhou; Xiangkun Li; Zhao-rui Chu; Jie Zhang

Effect of temperature downshifts on process performance and bacterial community dynamics was investigated in a bench-scale hybrid A/O system treating real domestic wastewater. Results showed that the average COD removal in this system reached 90.5%, 89.1% and 90.3% for Run 1 (25 °C), Run 2 (15 °C) and Run 3 (10 °C), respectively, and variations in temperature barely affected the effluent COD concentration. The average removal efficiencies of NH4(+)-N were 98.4%, 97.8%, 95.7%, and that of TN were 77.1%, 61.8%, 72% at 25 °C, 15 °C and 10 °C, respectively. Although the hybrid system was subjected to low temperature, this process effectively removed NH4(+)-N and TN even at 10 °C with the average effluent concentrations of 2.4 mg/L and 14.3 mg/L, respectively. Results from high-throughput sequencing analysis revealed that when the operation temperature decreased from 25 °C to 10 °C, the richness and diversity indexes of the system decreased in the sludge samples, while underwent an increase in the biofilm samples. Furthermore, the major heterotrophic bacteria consisted of Lewinella, Lutimonas, Chitinophaga and Fluviicola at 10 °C, which could be central to effective COD removal at low temperature. Additionally, Azospira, one denitrifying-related genus increased from 0.4% to 4.45% in the biofilm samples, with a stable TN removal in response to temperature downshifts. Nitrosomonas and Nitrospira increased significantly in the biofilm samples, implying that the attached biofilm contributed to more nitrification at low temperature.

Collaboration


Dive into the Xiangkun Li's collaboration.

Top Co-Authors

Avatar

Jie Zhang

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ke Wang

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kai-Li Ma

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ling-Wei Meng

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Liu Yang

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhao-rui Chu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shuli Liu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dong Li

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gaige Liu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Guangming Zhang

Harbin Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge