Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangling Yin is active.

Publication


Featured researches published by Xiangling Yin.


American Journal of Pathology | 2010

Brain Endothelial Cells Synthesize Neurotoxic Thrombin in Alzheimer’s Disease

Xiangling Yin; Jill Wright; Trevor Wall; Paula Grammas

Alzheimers disease (AD) is characterized by neuronal death; thus, identifying neurotoxic proteins and their source is central to understanding and treating AD. The multifunctional protease thrombin is neurotoxic and found in AD senile plaques. The objective of this study was to determine whether brain endothelial cells can synthesize thrombin and thus be a source of this neurotoxin in AD brains. Microvessels were isolated from AD patient brains and from age-matched controls. Reverse transcription-PCR demonstrated that thrombin message was highly expressed in microvessels from AD brains but was not detectable in control vessels. Similarly, Western blot analysis of microvessels showed that the thrombin protein was highly expressed in AD- but not control-derived microvessels. In addition, high levels of thrombin were detected in cerebrospinal fluid obtained from AD but not control patients, and sections from AD brains showed reactivity to thrombin antibody in blood vessel walls but not in vessels from controls. Finally, we examined the ability of brain endothelial cells in culture to synthesize thrombin and showed that oxidative stress or cell signaling perturbations led to increased expression of thrombin mRNA in these cells. The results demonstrate, for the first time, that brain endothelial cells can synthesize thrombin, and suggest that novel therapeutics targeting vascular stabilization that prevent or decrease release of thrombin could prove useful in treating this neurodegenerative disease.


Frontiers in Aging Neuroscience | 2013

Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia

Debjani Tripathy; Alma Sanchez; Xiangling Yin; Jinhua Luo; Joseph Martinez; Paula Grammas

Considerable evidence implicates hypoxia and vascular inflammation in Alzheimers disease (AD). Thrombin, a multifunctional inflammatory mediator, is demonstrable in the brains of AD patients both in the vessel walls and senile plaques. Hypoxia-inducible factor 1α (HIF-1α), a key regulator of the cellular response to hypoxia, is also upregulated in the vasculature of human AD brains. The objective of this study is to investigate inflammatory protein expression in the cerebrovasculature of transgenic AD mice and to explore the role of thrombin as a mediator of cerebrovascular inflammation and oxidative stress in AD and in hypoxia-induced changes in brain endothelial cells. Immunofluorescent analysis of the cerebrovasculature in AD mice demonstrates significant (p < 0.01–0.001) increases in thrombin, HIF-1α, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinases (MMPs), and reactive oxygen species (ROS) compared to controls. Administration of the thrombin inhibitor dabigatran (100 mg/kg) to AD mice for 34 weeks significantly decreases expression of inflammatory proteins and ROS. Exposure of cultured brain endothelial cells to hypoxia for 6 h causes an upregulation of thrombin, HIF-1α, MCP-1, IL-6, and MMP2 and ROS. Treatment of endothelial cells with the dabigatran (1 nM) reduces ROS generation and inflammatory protein expression (p < 0.01–0.001). The data demonstrate that inhibition of thrombin in culture blocks the increase in inflammatory protein expression and ROS generation evoked by hypoxia. Also, administration of dabigatran to transgenic AD mice diminishes ROS levels in brain and reduces cerebrovascular expression of inflammatory proteins. Taken together, these results suggest that inhibiting thrombin generation could have therapeutic value in AD and other disorders where hypoxia, inflammation, and oxidative stress are involved.


Neuroscience Research | 2012

Pigment epithelium-derived factor (PEDF) protects cortical neurons in vitro from oxidant injury by activation of extracellular signal-regulated kinase (ERK) 1/2 and induction of Bcl-2

Alma Sanchez; Debjani Tripathy; Xiangling Yin; Jinhua Luo; Joseph Martinez; Paula Grammas

Mitigating oxidative stress-induced damage is critical to preserve neuronal function in diseased or injured brains. This study explores the mechanisms contributing to the neuroprotective effects of pigment epithelium-derived factor (PEDF) in cortical neurons. Cultured primary neurons are exposed to PEDF and H₂O₂ as well as inhibitors of phosphoinositide-3 kinase (PI3K) or extracellular signal-regulated kinase 1/2 (ERK1/2). Neuronal survival, cell death and levels of caspase 3, PEDF, phosphorylated ERK1/2, and Bcl-2 are measured. The data show cortical cultures release PEDF and that H₂O₂ treatment causes cell death, increases activated caspase 3 levels and decreases release of PEDF. Exogenous PEDF induces a dose-dependent increase in Bcl-2 expression and neuronal survival. Blocking Bcl-2 expression by siRNA reduced PEDF-induced increases in neuronal survival. Treating cortical cultures with PEDF 24 h before H₂O₂ exposure mitigates oxidant-induced decreases in neuronal survival, Bcl-2 expression, and phosphorylation of ERK1/2 and also reduces elevated caspase 3 level and activity. PEDF pretreatment effect on survival is blocked by inhibiting ERK or PI3K. However, only inhibition of ERK reduced the ability of PEDF to protect neurons from H₂O₂-induced Bcl-2 decrease and neuronal death. These data demonstrate PEDF-mediated neuroprotection against oxidant injury is largely mediated via ERK1/2 and Bcl-2 and suggest the utility of PEDF in preserving the viability of oxidatively challenged neurons.


Journal of Endocrinology | 2008

Chrysin, a natural flavonoid enhances steroidogenesis and steroidogenic acute regulatory protein gene expression in mouse Leydig cells

Kuladip Jana; Xiangling Yin; Randolph B. Schiffer; Jau-Jiin Chen; Akhilesh K. Pandey; Douglas M. Stocco; Paula Grammas; XingJia Wang

During the aging process of males, testosterone biosynthesis declines in testicular Leydig cells resulting in decreases in various physiological functions. To explore the possibility of delaying the decline using food supplements, we have studied steroidogenic effects of a natural flavonoid, chrysin, in mouse Leydig cells. Chrysin dramatically increased cyclic AMP (cAMP)-induced steroidogenesis in MA-10 mouse Leydig tumor cells. This result was confirmed using Leydig cells isolated from mouse testes. The steroidogenic effect of chrysin is not associated with an increase in expression of the P450 side-chain cleavage enzyme, required for the conversion of cholesterol to pregnenolone. In addition, when 22(R)hydroxylcholesterol was used as a substrate, chrysin induced a non-significant increase in steroid hormone, suggesting that the majority of the observed increase in steroidogenesis was due to the increased supply of substrate cholesterol. These observations were corroborated by showing that chrysin induced a marked increase in the expression of steroidogenic acute regulatory (StAR) protein, the factor that controls mitochondrial cholesterol transfer. Also, chrysin significantly increased StAR promoter activity and StAR mRNA level. Further studies indicated that this compound depressed expression of DAX-1, a repressor in StAR gene transcription. In the absence of cAMP, chrysin did not increase steroidogenesis. However, when a sub-threshold level of cAMP was used, StAR protein and steroid hormone were increased by chrysin to the levels seen with maximal stimulation of cAMP. These results suggest that while chrysin itself is unable to induce StAR gene expression and steroidogenesis, it appears to function by increasing the sensitivity of Leydig cells to cAMP stimulation.


Journal of Alzheimer's Disease | 2014

Validation of a serum screen for Alzheimer’s disease across assay platforms, species and tissues

Sid E. O'Bryant; Guanghua Xiao; Fan Zhang; Melissa Edwards; Dwight C. German; Xiangling Yin; Tori Como; Joan S. Reisch; Ryan M. Huebinger; Neill R. Graff-Radford; Dennis W. Dickson; Robert Barber; James R. Hall; Padraig O'Suilleabhain; Paula Grammas

BACKGROUND There is a significant need for rapid and cost-effective biomarkers of Alzheimers disease (AD) for advancement of clinical practice and therapeutic trials. OBJECTIVE The aim of the current study was to cross-validate our previously published serum-based algorithm on an independent assay platform as well as validate across tissues and species. Preliminary analyses were conducted to examine the utility in distinguishing AD from non-AD neurological disease (Parkinsons disease, PD). METHODS Serum proteins from our previously published algorithm were quantified from 150 AD cases and 150 controls on the Meso Scale Discovery (MSD) platform. Serum samples were analyzed from 49 PD cases and compared to a random sample of 51 AD cases and 62 controls. Support vector machines (SVM) were used to discriminate PD versus AD versus controls. Human and AD mouse model microvessel images were quantified with HAMAMATSU imaging software. Mouse serum biomarkers were assayed via MSD. RESULTS Analysis of 21 serum proteins from 150 AD cases and 150 controls yielded an algorithm with sensitivity and specificity of 0.90 for correctly classifying AD. This multi-marker approach was then validated across species and tissue. Assay of the top proteins in human and AD mouse model brain microvessels correctly classified 90-100% of the samples. SVM analyses were highly accurate at distinguishing PD versus AD versus controls. CONCLUSIONS This serum-based biomarker panel should be tested in a community-based setting to determine its utility as a first-line screen for AD and non-AD neurological diseases for primary care providers.


Microvascular Research | 2012

Hypoxia induces angiogenic factors in brain microvascular endothelial cells.

Jinhua Luo; Joseph Martinez; Xiangling Yin; Alma Sanchez; Debjani Tripathy; Paula Grammas

Hypoxia is increasingly recognized as an important contributing factor to the development of brain diseases such as Alzheimers disease (AD). In the periphery, hypoxia is a powerful regulator of angiogenesis. However, vascular endothelial cells are remarkably heterogeneous and little is known about how brain endothelial cells respond to hypoxic challenge. The objective of this study is to characterize the effect of hypoxic challenge on the angiogenic response of cultured brain-derived microvascular endothelial cells. Brain endothelial cell cultures were initiated from isolated rat brain microvessels and subjected to hypoxia (1% O(2)) for various time periods. The results showed that hypoxia induced rapid (≤ 0.5h) expression of hypoxia-inducible factor 1α (HIF-1α) and that cell viability, assessed by MTT assay, was unaffected within the first 8h. Examination of brain endothelial cell cultures for pro- and anti-angiogenic proteins by western blot, RT-PCR and ELISA revealed that within 0.5 to 2h of hypoxia levels of vascular endothelial growth factor and endothelin-1 mRNA and protein were elevated. The expression of heme oxygenase-1 also increased but only after 8h of hypoxia. In contrast, similar hypoxia exposure evoked a decrease in endothelial nitric oxide synthase and thrombospondin-2 levels. Exposure of brain endothelial cell cultures to hypoxia resulted in a significant (p<0.001) decrease (94%) in tube length, an in vitro index of angiogenesis, compared to control cultures. The data indicate that, despite a shift toward a pro-angiogenic phenotype, hypoxia inhibited vessel formation in brain endothelial cells. These results suggest that in brain endothelial cells expression of angiogenic factors is not sufficient for the development of new vessels. Further work is needed to determine what factors/conditions prevent hypoxia-induced angiogenic changes from culminating in the formation of new brain blood vessels and what role this may play in the pathologic changes observed in AD and other diseases characterized by cerebral hypoxia.


Journal of Alzheimer's Disease | 2013

Neurovascular Unit and the Effects of Dosage in VEGF Toxicity: Role for Oxidative Stress and Thrombin

Alma Sanchez; Debjani Tripathy; Jinau Luo; Xiangling Yin; Joseph Martinez; Paula Grammas

Bidirectional communication between neurons and vascular cells is important to the maintenance of the central nervous system (CNS) milieu. Vascular endothelial growth factor (VEGF), through its ability to affect both vascular and neuronal cells, is likely a key protein in this process. Despite considerable literature documenting a neuroprotective function for VEGF, overexpression of this protein has also been shown in a wide variety of CNS diseases, including Alzheimers disease (AD). Increased oxidative stress and elevated thrombin levels have also been documented in AD, specifically in the microvasculature. The aim of the current study is to examine endothelial cells and neurons in vitro to determine the effects of oxidative stress and thrombin on VEGF release as well as the effects of low and high dose VEGF on neuronal viability. The data show that microvessels isolated from AD patients secrete significantly higher levels of VEGF compared to control-derived vessels. Exposure of brain endothelial cells to oxidative stress (sodium nitroprusside, menadione, or hydrogen peroxide) or thrombin significantly increases VEGF expression. Exposure of cultured neurons to oxidative stress increases expression of thrombin. Treating rat cortical neurons with high dose VEGF (≥500 ng/ml) decreases neuronal survival and expression of the anti-apoptotic protein Bcl-2 while increasing proapoptic proteins caspase 3 and phosphorylated p38 MAPK. High dose VEGF also negates the decrease in amyloid-β evoked by low dose VEGF. These results suggest that despite literature supporting neuroprotective effects of this protein, caution is warranted prior to implementation of VEGF as a therapeutic in the brain.


Journal of Alzheimer's Disease | 2012

p38 MAPK: A Mediator of Hypoxia-Induced Cerebrovascular Inflammation

Alma Sanchez; Debjani Tripathy; Xiangling Yin; Katheryn Desobry; Joseph Martinez; Jarred Riley; Jinau Luo; Paula Grammas

Vascular perturbations and hypoxia are increasingly implicated in Alzheimers disease (AD) pathogenesis. Cerebral hypoxia induces a large number of inflammatory proteins in brain endothelial cells via signaling pathways that have not been defined. The p38 mitogen-activated protein kinase (MAPK) signaling system has been implicated in endothelial injury and inflammation. The objective of this study is to examine p38 MAPK levels in the cerebromicrovasulature in AD and AD animal models and determine the role of p38 MAPK signaling in hypoxia-mediated effects on brain endothelial cells. Western blot analysis of isolated human brain microvessels show that the phosphorylated (active) form of p38 MAPK (pp38 MAPK) is increased in vessels derived from AD brains compared to control-derived vessels. Similarly, immunofluorescent analysis reveals an increase in cerebrovascular pp38 MAPK as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in transgenic AD mice. Exposure of brain endothelial cells to hypoxia (2-6 hours) shows a time-dependent increase in pp38 MAPK. Examination of these cultures at 6 hours hypoxia shows that iNOS and COX-2 are significantly elevated and that the selective p38 MAPK inhibitor SB203580 significantly reduces the hypoxia-mediated increase in their expression. Inhibition of p38 MAPK in cultured brain endothelial cells also significantly decreases the hypoxia-induced increase in the inflammatory proteins, matrix metalloproteinase-2 and angiopoietin-2. These data demonstrate that pp38 MAPK is a key regulator of hypoxia in the cerebrovasculature and suggest that control of this signaling pathway could have therapeutic value in AD and other disorders where hypoxia is involved.


Journal of Neuroinflammation | 2010

Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging

Debjani Tripathy; Xiangling Yin; Alma Sanchez; Jinhua Luo; Joseph Martinez; Paula Grammas

BackgroundMost neurodegenerative diseases are age-related disorders; however, how aging predisposes the brain to disease has not been adequately addressed. The objective of this study is to determine whether expression of proteins in the cerebromicrovasculature related to inflammation, oxidative stress and neurotoxicity is altered with aging.MethodsBrain microvessels are isolated from Fischer 344 rats at 6, 12, 18 and 24 months of age. Levels of interleukin (IL)-1β and IL-6 RNA are determined by RT-PCR and release of cytokines into the media by ELISA. Vessel conditioned media are also screened by ELISA for IL-1α, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α, (TNFα), and interferon γ (IFNγ). Immunofluorescent analysis of brain sections for IL-1β and IL-6 is performed.ResultsExpression of IL-1β and IL-6, both at RNA and protein levels, significantly (p < 0.01) decreases with age. Levels of MCP-1, TNFα, IL-1α, and IFNγ are significantly (p < 0.05-0.01) lower in 24 month old rats compared to 6 month old animals. Immunofluorescent analysis of brain vessels also shows a decline in IL-1β and IL-6 in aged rats. An increase in oxidative stress, assessed by increased carbonyl formation, as well as a decrease in the antioxidant protein manganese superoxide dismutase (MnSOD) is evident in vessels of aged animals. Finally, addition of microvessel conditioned media from aged rats to neuronal cultures evokes significant (p < 0.001) neurotoxicity.ConclusionsThese data demonstrate that cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging and suggest that the microvasculature may contribute to functional changes in the aging brain.


Journal of Endocrinology | 2010

Blocking L-type calcium channels reduced the threshold of cAMP-induced steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells

Akhilesh K. Pandey; Wei Li; Xiangling Yin; Douglas M. Stocco; Paula Grammas; XingJia Wang

Previous studies have reported the roles of Ca(2+) in steroidogenesis. The present study has investigated an inhibitory effect of Ca(2+) influx through L-type Ca(2+) channels on gene expression of steroidogenic acute regulatory (STAR) protein that regulates the transfer of substrate cholesterol to the inner mitochondrial membrane for steroidogenesis. Blocking Ca(2+) influx through L-type Ca(2+) channels using the selective Ca(2+) channel blocker, nifedipine, markedly enhanced cAMP-induced STAR protein expression and progesterone production in MA-10 mouse Leydig cells. This was confirmed by utilization of different L-type Ca(2+) channel blockers. Reverse transcription-PCR analyses of Star mRNA and luciferase assays of Star promoter activity indicated that blocking Ca(2+) influx through L-type Ca(2+) channels acted at the level of Star gene transcription. Further studies showed that blocking the Ca(2+) channel enhanced Star gene transcription by depressing the expression of DAX-1 (NR0B1 as listed in the MGI Database) protein, a transcriptional repressor of Star gene expression. It was also observed that there is a synergistic interaction between nifedipine and cAMP. Normally, sub-threshold levels of cAMP are unable to induce steroidogenesis, but in the presence of the L-type Ca(2+) channel blocker, they increased STAR protein and steroid hormone to the maximal levels. However, in the absence of minimal levels of cAMP, none of the L-type Ca(2+) channel blockers are able to induce Star gene expression. These observations indicate that Ca(2+) influx through L-type Ca(2+) channels is involved in an inhibitory effect on Star gene expression. Blocking L-type Ca(2+) channel attenuated the inhibition and reduced the threshold of cAMP-induced Star gene expression in Leydig cells.

Collaboration


Dive into the Xiangling Yin's collaboration.

Top Co-Authors

Avatar

Paula Grammas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alma Sanchez

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Debjani Tripathy

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Martinez

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Jinhua Luo

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Douglas M. Stocco

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

XingJia Wang

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Akhilesh K. Pandey

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Randolph B. Schiffer

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Shu Wang

Texas Tech University

View shared research outputs
Researchain Logo
Decentralizing Knowledge