Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangnan Zhang is active.

Publication


Featured researches published by Xiangnan Zhang.


Autophagy | 2013

Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance

Xiangnan Zhang; Haijing Yan; Yang Yuan; Jieqiong Gao; Zhe Shen; Yun Cheng; Yao Shen; Rongrong Wang; Xiaofen Wang; Weiwei Hu; Guanghui Wang; Zhong Chen

Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5−/− MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.


Autophagy | 2014

Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy.

Xiangnan Zhang; Yang Yuan; Lei Jiang; Jingying Zhang; Jieqiong Gao; Zhe Shen; Yanrong Zheng; Tian Deng; Haijing Yan; Wenlu Li; Wei-Wei Hou; Jianxin Lu; Yao Shen; Hai-bing Dai; Weiwei Hu; Zhuohua Zhang; Zhong Chen

Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2+/− mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation.


PLOS ONE | 2012

Oxygen-Glucose Deprivation Induced Glial Scar-Like Change in Astrocytes

Rongrong Wang; Xiangnan Zhang; Jianxiang Zhang; Yanying Fan; Yao Shen; Weiwei Hu; Zhong Chen

Background It has been demonstrated that cerebral ischemia induces astrocyte reactivity, and subsequent glial scar formation inhibits axonal regeneration during the recovery phase. Investigating the mechanism of glial scar formation will facilitate the development of strategies to improve axonal regeneration. However, an in vitro model of ischemia-induced glial scar has not yet been systematically established. Methodology and Principal Findings In the present study, we at the first time found that oxygen-glucose deprivation (OGD) in vitro can induce rat cortical astrocytes to present characteristics of glial scar. After OGD for 6 h, astrocytes showed a remarkable proliferation following 24 h reperfusion, evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and BrdU immunocytochemistry. Meanwhile, the expression of glial fibrillary acidic protein significantly increased, so did the expression of neurocan, which is a hallmark of the glial scar. In further experiments, neurons were co-cultured with astrocytes, which had been exposed to OGD, and then the immunostaining of class III β-tubulin was carried out to assess the neurite growth. When the co-culture was performed at 48 h reperfusion of astrocytes, the neurite growth was obviously inhibited, and this inhibition could be reversed by chondroitinase ABC, which digests glycosaminoglycan chains on CSPGs, including neurocan. However, the processes of neurons were elongated, when the co-culture was performed immediately after OGD. Conclusions and Significance Our results indicated that after conditioned OGD the astrocytes presented the characteristics of the glial scar, which are also comparable to the astrocytes in acute and chronic phases after cerebral ischemia in vivo. Therefore, the present system may be used as an in vitro model to explore the mechanisms underlying glial scar formation and the treatments to improve axonal regeneration after cerebral ischemia.


Journal of Biological Chemistry | 2012

Lanthionine Synthetase C-like Protein 1 Interacts with and Inhibits Cystathionine β-Synthase A TARGET FOR NEURONAL ANTIOXIDANT DEFENSE

Weixia Zhong; Yu-bin Wang; Lin Peng; Xue-zhen Ge; Jie Zhang; Shuang-shuang Liu; Xiangnan Zhang; Zheng-Hao Xu; Zhong Chen; Jianhong Luo

Background: The function of LanCL1 remains unknown. Cystathionine β-synthase (CBS) is important for GSH synthesis. Results: LanCL1 directly binds and inhibits CBS. Oxidative stress down-regulates the binding and increases CBS activity. Intervention in the binding exerts neuronal antioxidant defense. Conclusion: LanCL1 is a negative regulator of CBS and a sensor of oxidative stress. Significance: This study reveals a novel function of LanCL1 in CBS-mediated neuronal redox homeostasis. The finding that eukaryotic lanthionine synthetase C-like protein 1 (LanCL1) is a glutathione-binding protein prompted us to investigate the potential relationship between LanCL1 and cystathionine β-synthase (CBS). CBS is a trans-sulfuration enzyme critical for the reduced glutathione (GSH) synthesis and GSH-dependent defense against oxidative stress. In this study we found that LanCL1 bound to CBS in mouse cortex and HEK293 cells. Mapping studies revealed that the binding region in LanCL1 spans amino acids 158–169, and that in CBS contains N-terminal and C-terminal regulatory domains. Recombinant His-LanCL1 directly bound endogenous CBS from mouse cortical lysates and inhibited its activity. Overexpression of LanCL1 inhibited CBS activity in HEK293 cells. CBS activity is reported to be regulated by oxidative stress. Here we found that oxidative stress induced by H2O2 or glutamate lowered the GSH/GSSG ratio, dissociated LanCL1 from CBS, and elevated CBS activity in primary rat cortical neurons. Decreasing the GSH/GSSG ratio by adding GSSG to cellular extracts also dissociated LanCL1 from CBS. Either lentiviral knockdown of LanCL1 or specific disruption of the LanCL1-CBS interaction using the peptide Tat-LanCL1153–173 released CBS activity in neurons but occluded CBS activation in response to oxidative stress, indicating the major contribution of the LanCL1-CBS interaction to the regulation of CBS activity. Furthermore, LanCL1 knockdown or Tat-LanCL1153–173 treatment reduced H2O2 or glutamate-induced neuronal damage. This study implies potential therapeutic value in targeting the LanCL1-CBS interaction for neuronal oxidative stress-related diseases.


Nature Communications | 2014

Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms

Haijing Yan; Xiangnan Zhang; Weiwei Hu; Jing Ma; Wei-Wei Hou; Xingzhou Zhang; Xiaofen Wang; Jieqiong Gao; Yao Shen; Jianxin Lv; Hiroshi Ohtsu; Feng Han; Guanghui Wang; Zhong Chen

The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia.


CNS Neuroscience & Therapeutics | 2012

Chronic H1‐Antihistamine Treatment Increases Seizure Susceptibility After Withdrawal by Impairing Glutamine Synthetase

Weiwei Hu; Qi Fang; Zheng-Hao Xu; Haijing Yan; Ping He; Kai Zhong; Yanying Fan; Ying Yang; Xiangnan Zhang; Chun-Yang Zhang; Hiroshi Ohtsu; Tian-Le Xu; Zhong Chen

To investigate the effect of chronic H1‐antihistamine treatment on seizure susceptibility after drug withdrawal in nonepileptic rats and to further study its relation to glutamine synthetase (GS), which is the key enzyme for glutamate metabolism and gamma aminobutyric acid (GABA) synthesis.


Neuroscience Bulletin | 2015

Regulation of mitophagy in ischemic brain injury

Yang Yuan; Xiangnan Zhang; Yanrong Zheng; Zhong Chen

The selective degradation of damaged or excessive mitochondria by autophagy is termed mitophagy. Mitophagy is crucial for mitochondrial quality control and has been implicated in several neurodegenerative disorders as well as in ischemic brain injury. Emerging evidence suggested that the role of mitophagy in cerebral ischemia may depend on different pathological processes. In particular, a neuroprotective role of mitophagy has been proposed, and the regulation of mitophagy seems to be important in cell survival. For these reasons, extensive investigations aimed to profile the mitophagy process and its underlying molecular mechanisms have been executed in recent years. In this review, we summarize the current knowledge regarding the mitophagy process and its role in cerebral ischemia, and focus on the pathological events and molecules that regulate mitophagy in ischemic brain injury.


Journal of Cerebral Blood Flow and Metabolism | 2014

A Novel Neuroprotective Strategy for Ischemic Stroke: Transient Mild Acidosis Treatment by CO2 Inhalation at Reperfusion

Yanying Fan; Zhe Shen; Ping He; Lei Jiang; Wei-Wei Hou; Yao Shen; Xiangnan Zhang; Weiwei Hu; Zhong Chen

Acidosis is one of the key components in cerebral ischemic postconditioning that has emerged recently as an endogenous strategy for neuroprotection. We set out to test whether acidosis treatment at reperfusion can protect against cerebral ischemia/reperfusion injury. Adult male C57BL/6 J mice were subjected to 60-minute middle cerebral arterial occlusion followed by 24-hour reperfusion. Acidosis treatment by inhaling 10%, 20%, or 30% CO2 for 5 or 10 minutes at 5, 50, or 100 minutes after reperfusion was applied. Our results showed that inhaling 20% CO2 for 5 minutes at 5 minutes after reperfusion-induced optimal neuroprotection, as revealed by reduced infarct volume. Attenuating brain acidosis with NaHCO3 significantly compromised the acidosis or ischemic postconditioning-induced neuroprotection. Consistently, both acidosis-treated primary cultured cortical neurons and acute corticostriatal slices were more resistant to oxygen–glucose deprivation/reperfusion insult. In addition, acidosis inhibited ischemia/reperfusion-induced apoptosis, caspase-3 expression, cytochrome c release to cytoplasm, and mitochondrial permeability transition pore (mPTP) opening. The neuroprotection of acidosis was inhibited by the mPTP opener atractyloside both in vivo and in vitro. Taken together, these findings indicate that transient mild acidosis treatment at reperfusion protects against cerebral ischemia/reperfusion injury. This neuroprotection is likely achieved, at least partly, by inhibiting mPTP opening and mitochondria-dependent apoptosis.


CNS Neuroscience & Therapeutics | 2015

Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury.

Zhe Shen; Lei Jiang; Yang Yuan; Tian Deng; Yanrong Zheng; Yan-Yan Zhao; Wenlu Li; Jiaying Wu; Jian-Qing Gao; Weiwei Hu; Xiangnan Zhang; Zhong Chen

Lactates accumulate in ischemic brains. G protein‐coupled receptor 81 (GPR81) is an endogenous receptor for lactate. We aimed to explore whether lactate is involved in ischemic injury via activating GPR81.


Autophagy | 2017

BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2

Yang Yuan; Yanrong Zheng; Xiangnan Zhang; Ying Chen; Xiaoli Wu; Jiaying Wu; Zhe Shen; Lei Jiang; Lu Wang; Wei Yang; Jianhong Luo; Zheng-Hong Qin; Weiwei Hu; Zhong Chen

ABSTRACT Cerebral ischemia induces massive mitochondrial damage. These damaged mitochondria are cleared, thus attenuating brain injury, by mitophagy. Here, we identified the involvement of BNIP3L/NIX in cerebral ischemia-reperfusion (I-R)-induced mitophagy. Bnip3l knockout (bnip3l−/−) impaired mitophagy and aggravated cerebral I-R injury in mice, which can be rescued by BNIP3L overexpression. The rescuing effects of BNIP3L overexpression can be observed in park2−/− mice, which showed mitophagy deficiency after I-R. Interestingly, bnip3l and park2 double-knockout mice showed a synergistic mitophagy deficiency with I-R treatment, which further highlighted the roles of BNIP3L-mediated mitophagy as being independent from PARK2. Further experiments indicated that phosphorylation of BNIP3L serine 81 is critical for BNIP3L-mediated mitophagy. Nonphosphorylatable mutant BNIP3LS81A failed to counteract both mitophagy impairment and neuroprotective effects in bnip3l−/− mice. Our findings offer insights into mitochondrial quality control in ischemic stroke and bring forth the concept that BNIP3L could be a potential therapeutic target for ischemic stroke, beyond its accepted role in reticulocyte maturation.

Collaboration


Dive into the Xiangnan Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao Shen

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Ying Chen

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge