Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangrui Kong is active.

Publication


Featured researches published by Xiangrui Kong.


Journal of Physical Chemistry Letters | 2011

Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film

Erik S. Thomson; Xiangrui Kong; Patrik U. Andersson; Nikola Marković; Jan B. C. Pettersson

Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47 ± 0.11 eV and pre-exponential factor of 4.6 × 10^(15±3) s^(–1). We also observe a temperature-dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature-dependent surfactant behavior.


Journal of Physical Chemistry A | 2014

Water Accommodation and Desorption Kinetics on Ice

Xiangrui Kong; Panos Papagiannakopoulos; Erik S. Thomson; Nikola Marković; Jan B. C. Pettersson

The interaction of water vapor with ice remains incompletely understood despite its importance in environmental processes. A particular concern is the probability for water accommodation on the ice surface, for which results from earlier studies vary by more than 2 orders of magnitude. Here, we apply an environmental molecular beam method to directly determine water accommodation and desorption kinetics on ice. Short D2O gas pulses collide with H2O ice between 170 and 200 K, and a fraction of the adsorbed molecules desorbs within tens of milliseconds by first order kinetics. The bulk accommodation coefficient decreases nonlinearly with increasing temperature and reaches 0.41 ± 0.18 at 200 K. The kinetics are well described by a model wherein water molecules adsorb in a surface state from which they either desorb or become incorporated into the bulk ice structure. The weakly bound surface state affects water accommodation on the ice surface with important implications for atmospheric cloud processes.


Journal of Physical Chemistry B | 2014

Water interactions with acetic acid layers on ice and graphite.

Panos Papagiannakopoulos; Xiangrui Kong; Erik S. Thomson; Jan B. C. Pettersson

Adsorbed organic compounds modify the properties of environmental interfaces with potential implications for many Earth system processes. Here, we describe experimental studies of water interactions with acetic acid (AcOH) layers on ice and graphite surfaces at temperatures from 186 to 200 K. Hyperthermal D2O water molecules are efficiently trapped on all of the investigated surfaces, with only a minor fraction that scatters inelastically after an 80% loss of kinetic energy to surface modes. Trapped molecules desorb rapidly from both μm-thick solid AcOH and AcOH monolayers on graphite, indicating that water has limited opportunities to form hydrogen bonds with these surfaces. In contrast, trapped water molecules bind efficiently to AcOH-covered ice and remain on the surface on the observational time scale of the experiments (60 ms). Thus, adsorbed AcOH is observed to have a significant impact on water-ice surface properties and to enhance the water accommodation coefficient compared to bare ice surfaces. The mechanism for increased water uptake and the implications for atmospheric cloud processes are discussed.


Journal of Physical Chemistry B | 2014

Water Accommodation on Ice and Organic Surfaces: Insights from Environmental Molecular Beam Experiments

Xiangrui Kong; Erik S. Thomson; Panos Papagiannakopoulos; Sofia M. Johansson; Jan B. C. Pettersson

Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.


Review of Scientific Instruments | 2017

A novel gas-vacuum interface for environmental molecular beam studies

Sofia M. Johansson; Xiangrui Kong; Panos Papagiannakopoulos; Erik S. Thomson; Jan B. C. Pettersson

Molecular beam techniques are commonly used to obtain detailed information about reaction dynamics and kinetics of gas-surface interactions. These experiments are traditionally performed in vacuum and the dynamic state of surfaces under ambient conditions is thereby excluded from detailed studies. Herein we describe the development and demonstration of a new vacuum-gas interface that increases the accessible pressure range in environmental molecular beam (EMB) experiments. The interface consists of a grating close to a macroscopically flat surface, which allows for experiments at pressures above 1 Pa including angularly resolved measurements of the emitted flux. The technique is successfully demonstrated using key molecular beam experiments including elastic helium and inelastic water scattering from graphite, helium and light scattering from condensed adlayers, and water interactions with a liquid 1-butanol surface. The method is concluded to extend the pressure range and flexibility in EMB studies with implications for investigations of high pressure interface phenomena in diverse fields including catalysis, nanotechnology, environmental science, and life science. Potential further improvements of the technique are discussed.


Journal of Physical Chemistry Letters | 2017

Coexistence of Physisorbed and Solvated HCl at Warm Ice Surfaces

Xiangrui Kong; Astrid Waldner; Fabrizio Orlando; Luca Artiglia; Thomas Huthwelker; Markus Ammann; Thorsten Bartels-Rausch

The interfacial ionization of strong acids is an essential factor of multiphase and heterogeneous chemistry in environmental science, cryospheric science, catalysis research and material science. Using near ambient pressure core level X-ray photoelectron spectroscopy, we directly detected a low surface coverage of adsorbed HCl at 253 K in both molecular and dissociated states. Depth profiles derived from XPS data indicate the results as physisorbed molecular HCl at the outermost ice surface and dissociation occurring upon solvation deeper in the interfacial region. Complementary X-ray absorption measurements confirm that the presence of Cl- ions induces significant changes to the hydrogen bonding network in the interfacial region. This study gives clear evidence for nonuniformity across the air-ice interface and questions the use of acid-base concepts in interfacial processes.


Tellus B: Chemical and Physical Meteorology | 2018

A continuous flow diffusion chamber study of sea salt particles acting as cloud nuclei: deliquescence and ice nucleation

Xiangrui Kong; Martin J. Wolf; Michael Roesch; Erik S. Thomson; Thorsten Bartels-Rausch; Peter A. Alpert; Markus Ammann; Nønne L. Prisle; Daniel J. Cziczo

Abstract Phase changes of sea salt particles alter their physical and chemical properties, which is significant for Earth’s chemistry and energy budget. In this study, a continuous flow diffusion chamber is used to investigate deliquescence, homogeneous and heterogeneous ice nucleation between 242 K and 215 K, of four salts: pure NaCl, pure MgCl2, synthetic sea water salt, and salt distilled from sampled sea water. Anhydrous particles, aqueous droplets and ice particles were discriminated using a polarisation-sensitive optical particle counter coupled with a machine learning analysis technique. The measured onset deliquescence relative humidities agree with previous studies, where sea water salts deliquescence at lower humidities than pure NaCl. Deliquesced salt droplets homogenously freeze when the relative humidity reaches a sufficiently high value at temperatures below 233 K. From 224 K and below, deposition nucleation freezing on a fraction of NaCl particles was observed at humidities lower than the deliquescence relative humidity. At these low temperatures, otherwise unactivated salt particles deliquesced at the expected deliquescence point, followed by homogeneous freezing at temperatures as low as 215 K. Thus, the observed sea salt particles exhibit a triad of temperature-dependent behaviours. First, they act as cloud condensation particles (CCNs) > 233 K, second they can be homogeneous freezing nuclei (HFNs) < 233 K and finally they act as ice nucleating particles (INPs) for heterogeneous nucleation <224 K.


Journal of Physical Chemistry A | 2018

Rapid Water Transport through Organic Layers on Ice

Xiangrui Kong; Céline Toubin; Alena Habartová; Eva Pluharova; Martina Roeselová; Jan B. C. Pettersson

Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.


Journal of Physical Chemistry A | 2017

The Dynamics and Kinetics of Water Interactions with a Condensed Nopinone Surface

Sofia M. Johansson; Xiangrui Kong; Erik S. Thomson; Mattias Hallquist; Jan B. C. Pettersson

Water and organic molecules are omnipresent in the environment, and their interactions are of central importance in many Earth system processes. Here we investigate molecular-level interactions between water and a nopinone surface using an environmental molecular beam (EMB) technique. Nopinone is a major reaction product formed during oxidation of β-pinene, a prominent compound emitted by coniferous trees, which has been found in both the gas and particle phases of atmospheric aerosol. The EMB method enables detailed studies of the dynamics and kinetics of D2O molecules interacting with a solid nopinone surface at 202 K. Hyperthermal collisions between water and nopinone result in efficient trapping of water molecules, with a small fraction that scatter inelastically after losing 60-80% of their incident kinetic energy. While the majority of the trapped molecules rapidly desorb with a time constant τ less than 10 μs, a substantial fraction (0.32 ± 0.09) form strong bonds with the nopinone surface and remain in the condensed phase for milliseconds or longer. The interactions between water and nopinone are compared to results for recently studied water-alcohol and water-acetic acid systems, which display similar collision dynamics but differ with respect to the kinetics of accommodated water. The results contribute to an emerging surface science-based view and molecular-level description of organic aerosols in the atmosphere.


Journal of Physical Chemistry C | 2012

Ice Formation via Deposition Mode Nucleation on Bare and Alcohol-Covered Graphite Surfaces

Xiangrui Kong; Patrik U. Andersson; Erik S. Thomson; Jan B. C. Pettersson

Collaboration


Dive into the Xiangrui Kong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikola Marković

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge