Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangyang Hu is active.

Publication


Featured researches published by Xiangyang Hu.


Plant Physiology | 2005

Nitric oxide mediates gravitropic bending in soybean roots.

Xiangyang Hu; Steven J. Neill; Zhangcheng Tang; Weiming Cai

Plant roots are gravitropic, detecting and responding to changes in orientation via differential growth that results in bending and reestablishment of downward growth. Recent data support the basics of the Cholodny-Went hypothesis, indicating that differential growth is due to redistribution of auxin to the lower sides of gravistimulated roots, but little is known regarding the molecular details of such effects. Here, we investigate auxin and gravity signal transduction by demonstrating that the endogenous signaling molecules nitric oxide (NO) and cGMP mediate responses to gravistimulation in primary roots of soybean (Glycine max). Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip. Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric, with NO concentrating in the lower side of the root. Removal of NO with an NO scavenger or inhibition of NO synthesis via NO synthase inhibitors or an inhibitor of nitrate reductase reduced both NO accumulation and gravitropic bending, indicating that NO synthesis was required for the gravitropic responses and that both NO synthase and nitrate reductase may contribute to the synthesis of the NO required. Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips. Gravistimulation, NO, and auxin also induced the accumulation of cGMP, a response inhibited by removal of NO or by inhibitors of guanylyl cyclase, compounds that also reduced gravitropic bending. Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor, and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP, a cell-permeable analog of cGMP. These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots.


Nature Communications | 2012

Widespread impact of horizontal gene transfer on plant colonization of land

Jipei Yue; Xiangyang Hu; Hang Sun; Yongping Yang; Jinling Huang

In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants.


PLOS ONE | 2011

Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiaris toxicaria Seeds via Protein S-Nitrosylation and Carbonylation

Xuegui Bai; Liming Yang; Meihua Tian; Jinhui Chen; Jisen Shi; Yongping Yang; Xiangyang Hu

The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H2O2, which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H2O2 production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H2O2 accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H2O2 accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities.


Plant Physiology | 2012

N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean.

Xuegui Bai; Christopher D. Todd; Radhika Desikan; Yongping Yang; Xiangyang Hu

N-Acyl-homoserine-lactones (AHLs) are bacterial quorum-sensing signaling molecules that regulate population density. Recent evidence demonstrates their roles in plant defense responses and root development. Hydrogen peroxide (H2O2), nitric oxide (NO), and cyclic GMP (cGMP) are essential messengers that participate in various plant physiological processes, but how these messengers modulate the plant response to N-acyl-homoserine-lactone signals remains poorly understood. Here, we show that the N-3-oxo-decanoyl-homoserine-lactone (3-O-C10-HL), in contrast to its analog with an unsubstituted branch chain at the C3 position, efficiently stimulated the formation of adventitious roots and the expression of auxin-response genes in explants of mung bean (Vigna radiata) seedlings. This response was mimicked by the exogenous application of auxin, H2O2, NO, or cGMP homologs but suppressed by treatment with scavengers or inhibitors of H2O2, NO, or cGMP metabolism. The 3-O-C10-HL treatment enhanced auxin basipetal transport; this effect could be reversed by treatment with H2O2 or NO scavengers but not by inhibitors of cGMP synthesis. Inhibiting 3-O-C10-HL-induced H2O2 or NO accumulation impaired auxin- or 3-O-C10-HL-induced cGMP synthesis; however, blocking cGMP synthesis did not affect auxin- or 3-O-C10-HL-induced H2O2 or NO generation. Additionally, cGMP partially rescued the inhibitory effect of H2O2 or NO scavengers on 3-O-C10-HL-induced adventitious root development and auxin-response gene expression. These results suggest that 3-O-C10-HL, unlike its analog with an unmodified branch chain at the C3 position, can accelerate auxin-dependent adventitious root formation, possibly via H2O2- and NO-dependent cGMP signaling in mung bean seedlings.


Journal of Proteome Research | 2011

Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize.

Xuegui Bai; Liming Yang; Yunqiang Yang; Parvaiz Ahmad; Yongping Yang; Xiangyang Hu

Saline stress is a major factor that limits crop yield. Nitric oxide (NO) is functional during plant growth, development, and defense responses. In the present study, the protective role of NO in alleviating saline stress in maize at the physiological and proteomic levels was examined. Our results showed that salt treatment quickly induced NO accumulation and addition of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) efficiently eliminated the inhibitory effect of salt on shoot growth and photosynthesis and inhibited salt-inducible H2O2 accumulation. These effects could be reversed by NO metabolic scavengers and inhibitors. Further proteomic and Western blotting analysis revealed that NO induced G-protein-associated protein accumulation and antioxidant enzymes activities, in addition to activation of defense proteins, energy metabolism, and cell structure/division in salt-treated maize seedlings. Controlling the G-protein status with G-protein activators or inhibitors also affected NO generation and root and stem growth in maize seedlings after saline stress. On the basis of these results, we propose that NO enhances salt tolerance in maize seedlings by enhancing antioxidant enzyme activities and controlling H2O2 levels, and these effects are accompanied by diverse downstream defense responses. During this process, G-protein signaling is an early event that works upstream of NO biogenesis.


Functional Plant Biology | 2003

Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng

Xiangyang Hu; Steven J. Neill; Weiming Cai; Zhangcheng Tang

The elicitor oligogalacturonic acid (OGA) stimulated nitric oxide (NO) accumulation in the growth medium of ginseng suspension cultures and induced increased nitric oxide synthase (NOS) activity in ginseng cells. OGA also stimulated accumulation of saponin, transcription of genes encoding squalene synthase (sqs) and squalene epoxidase (sqe), two early enzymes of saponin synthesis, and the accumulation of β-amyrin synthase protein (β-AS). Saponin accumulation, sqs and sqe gene expression, and increases in β-AS content were also induced by exposure to NO via the NO donor sodium nitroprusside (SNP). Inhibitors of mammalian nitric oxide synthase reduced both OGA-induced NO accumulation and NOS activity, suggesting that OGA-induced NO production occurs via a NOS-like enzyme. OGA-induced accumulation of β-AS and saponin, and transcription of sqs and sqe, were suppressed by treatments that removed NO or inhibited its production, indicating a role for NO in mediating OGA effects on these defence responses. NO accumulation and increased NOS activity were inhibited by calcium channel inhibitors and a protein kinase inhibitor, but not by a protein phosphatase inhibitor, indicating the requirement for calcium and protein phosphorylation during OGA-induced NO production. Saponin production and transcription, and accumulation of saponin biosynthetic genes and enzymes were also suppressed by these treatments, as well as by the protein phosphatase inhibitor okadaic acid.


Free Radical Biology and Medicine | 2012

Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis

Xuegui Bai; Jinhui Chen; Xiangxiang Kong; Christopher D. Todd; Yongping Yang; Xiangyang Hu; De-zhu Li

Both carbon monoxide (CO) and nitric oxide (NO) play fundamental roles in plant responses to environmental stress. Glutathione (GSH) homeostasis through the glutathione-ascorbate cycle regulates the cellular redox status and protects the plant from damage due to reactive oxygen species (ROS) or reactive nitrogen species (RNS). Most recalcitrant seeds are sensitive to chilling stress, but the roles of and cross talk among CO, NO, ROS, and GSH in recalcitrant seeds under low temperature are not well understood. Here, we report that the germination of recalcitrant Baccaurea ramiflora seeds shows sensitivity to chilling stress, but application of exogenous CO or NO markedly increased GSH accumulation, enhanced the activities of antioxidant enzymes involved in the glutathione-ascorbate cycle, decreased the content of H(2)O(2) and RNS, and improved the tolerance of seeds to low-temperature stress. Compared to orthodox seeds such as maize, only transient accumulation of CO and NO was induced and only a moderate increase in GSH was shown in the recalcitrant B. ramiflora seeds. Exogenous CO or NO treatment further increased the GSH accumulation and S-nitrosoglutathione reductase (GSNOR) activity in B. ramiflora seeds under chilling stress. In contrast, suppressing CO or NO generation, removing GSH, or blocking GSNOR activity resulted in increases in ROS and RNS and impaired the germination of CO- or NO-induced seeds under chilling stress. Based on these results, we propose that CO acts as a novel regulator to improve the tolerance of recalcitrant seeds to low temperatures through NO-mediated glutathione homeostasis.


BMC Genomics | 2011

Analyses of the oligopeptide transporter gene family in poplar and grape

Jun Cao; Jinling Huang; Yongping Yang; Xiangyang Hu

BackgroundOligopeptide transporters (OPTs) are a group of membrane-localized proteins that have a broad range of substrate transport capabilities and that are thought to contribute to many biological processes. The OPT proteins belong to a small gene family in plants, which includes about 25 members in Arabidopsis and rice. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, expression profiling, functional divergence and selective pressure analysis has been reported thus far for Populus and Vitis.ResultsIn the present study, a comprehensive analysis of the OPT gene family in Populus (P. trichocarpa) and Vitis (V. vinifera) was performed. A total of 20 and 18 full-length OPT genes have been identified in Populus and Vitis, respectively. Phylogenetic analyses indicate that these OPT genes consist of two classes that can be further subdivided into 11 groups. Gene structures are considerably conserved among the groups. The distribution of OPT genes was found to be non-random across chromosomes. A high proportion of the genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the OPT gene family. Expression patterns based on our analyses of microarray data suggest that many OPT genes may be important in stress response and functional development of plants. Further analyses of functional divergence and adaptive evolution show that, while purifying selection may have been the main force driving the evolution of the OPTs, some of critical sites responsible for the functional divergence may have been under positive selection.ConclusionsOverall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus and Vitis OPT gene family and of the function and evolution of the OPT gene family in higher plants.


Critical Reviews in Biotechnology | 2013

Ca2+ signals: The versatile decoders of environmental cues

Maryam Sarwat; Parvaiz Ahmad; Gowher Nabi; Xiangyang Hu

Plants are often subjected to various environmental stresses that lead to deleterious effects on growth, production, sustainability, etc. The information of the incoming stress is read by the plants through the mechanism of signal transduction. The plant Ca2+ serves as secondary messenger during adaptations to stressful conditions and developmental processes. A plethora of Ca2+ sensors and decoders functions to bring about these changes. The cellular concentrations of Ca2+, their subcellular localization, and the specific interaction affinities of Ca2+ decoder proteins all work together to make this process a complex but synchronized signaling network. In this review, we focus on the versatility of these sensors and decoders in the model plant Arabidopsis as well as plants of economical importance. Here, we have also thrown light on the possible mechanism of action of these important components.


Planta | 2011

Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation

Qi Chen; Liming Yang; Parvaiz Ahmad; Xiaochun Wan; Xiangyang Hu

Tea seed is believed to be recalcitrant based on its sensitivity to chilling or drying stress. Reactive oxygen species (ROS) and alterations in cytosolic redox status have been implicated in intolerance to desiccation by recalcitrant seed, but there is little information available regarding how ROS are regulated in seeds susceptible to drying stress. We investigated changes in protein expression and activity in tea embryo in response to desiccation using physiological and proteomic methods. Results showed that desiccation treatment dramatically induced the accumulation of H2O2 in tea embryos, accompanied by increased activities of antioxidant enzymes like ascorbate peroxidase (APX) and superoxide dismutase (SOD). Proteomic analyses also demonstrated that 23 proteins associated with defense response, metabolism and redox status were up-regulated following desiccation. Increase in antioxidants, ascorbic acid (AsA) and catalase (CAT) (H2O2 scavengers) partially assuaged desiccation damage to tea seed, resulting in improved germination rates. Higher accumulation of H2O2 aggravated desiccation damage to seeds leading to lower germination activity. We propose that desiccation causes an over-accumulation of ROS that are not efficiently scavenged by increased levels of antioxidant enzymes. High levels of ROS alter the redox status and are detrimental to seed viability. Reducing ROS to appropriate concentrations is an efficient way to reduce desiccation damage and improve germination rates of recalcitrant seeds.

Collaboration


Dive into the Xiangyang Hu's collaboration.

Top Co-Authors

Avatar

Yongping Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangxiang Kong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinling Huang

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Jinhui Chen

Nanjing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Liming Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qian Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weiming Cai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunqiang Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuntao Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge