Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangzhen Shen is active.

Publication


Featured researches published by Xiangzhen Shen.


PLOS ONE | 2013

Long-term effects of subacute ruminal acidosis (SARA) on milk quality and hepatic gene expression in lactating goats fed a high-concentrate diet.

Haibo Dong; Shaoqing Wang; Yuanyuan Jia; Yingdong Ni; Yuanshu Zhang; Su Zhuang; Xiangzhen Shen; Ruqian Zhao

Purpose The mechanism underlying the decline in milk quality during periods of feeding high-concentrate diets to dairy ruminants is not well documented. The aim of this study was to investigate the metabolic changes in the liver that contribute to the input of substrate precursors to the mammary gland after feeding a high-concentrate diet to lactating goats for a long period. Experimental Design Eight mid-lactating goats with rumen cannulas were randomly assigned to two groups. For 9 weeks, the treatment group was fed a high-concentrate diet (60% concentrate of dry matter, HC) and the control group was fed a low-concentrate diet (40% concentrate of dry matter, LC). Ruminal fluid, plasma, and liver tissues were sampled, microarray techniques and real-time polymerase chain reaction were used to evaluate metabolic parameters and gene expression in liver. Results Feeding a 60%-concentrate diet for 9 weeks resulted in a significant decrease in rumen pH. Changes in fat and protein content also occurred, which negatively affected milk quality. Plasma levels of leptin (p = 0.058), non-esterified fatty acid (p = 0.071), and glucose (p = 0.014) increased markedly in HC group. Plasma cortisol concentration was significantly elevated in the treatment group (p<0.05). Expression of the glucocorticoid receptor protein gene was significantly down-regulated (p<0.05) in the liver. The expression of genes for interleukin 1β, serum amyloid A, C-reactive protein, and haptoglobin mRNA was significantly increased (p<0.05) in the HC group. GeneRelNet analysis showed that gene expression involved in inflammatory responses and the metabolism of lipids, protein, and carbohydrate were significantly altered by feeding a high-concentrate diet for 9 weeks. Conclusions Activation of the acute phase response and the inflammatory response may contribute to nutrient partitioning and re-distribution of energy in the liver, and ultimately lead to a decline in milk quality.


Animal | 2014

High concentrate-induced subacute ruminal acidosis (SARA) increases plasma acute phase proteins (APPs) and cortisol in goats.

Y. Y. Jia; Shaoqing Wang; Y. D. Ni; Yuanshu Zhang; Su Zhuang; Xiangzhen Shen

The aim of this study was to investigate changes of stress status in dairy goats induced to subacute ruminal acidosis (SARA). The level of acute phase proteins (APPs) including haptoglobin (HP) and serum amyloid A (SAA) in plasma and their mRNA expression in liver, as well as plasma cortisol and genes expression of key factors controlling cortisol synthesis in adrenal cortex were compared between SARA and control goats. SARA was induced by feeding high concentrate diet (60% concentrate of dry matter) for 3 weeks (SARA, n=6), while control goats (Con, n=6) received a low concentrate diet (40% concentrate of dry matter) during the experimental time. SARA goats showed ruminal pH below 5.8 for more than 3 h per day, which was significantly lower than control goats (pH>6.0). SARA goats demonstrated a significant increase of hepatic HP and SAA mRNA expression (P<0.05), and the level of HP but not SAA in plasma was markedly increased compared with control (P<0.05). The level of cortisol in plasma showed a trend to increase in SARA goats (0.05<P<0.1). In adrenal cortex, mRNA expression of 17α-hydroxylase cytochrome (P45017α ) (P<0.01) and 3β-hydroxysteroid dehydrogenase (3β-HSD) (P<0.05) was significantly increased in SARA goats. The contents of 3β-HSD and P450 side-chain cleavage protein were increased by 58.6% and 39.4%, respectively, but did not reach the statistical significance (P>0.05). These results suggested that SARA goats experienced a certain stress status, exhibiting an increase in HP production and cortisol secretion.


Veterinary Journal | 2015

Epigenetic mechanisms contribute to enhanced expression of immune response genes in the liver of cows after experimentally induced Escherichia coli mastitis.

Guangjun Chang; Wolfram Petzl; Jens Vanselow; Juliane Günther; Xiangzhen Shen; Hans-Martin Seyfert

Endotoxins, such as lipopolysaccharide (LPS), are released during infection with Gram-negative bacteria, which can result in excessive activation of toll-like receptor (TLR) signalling. The aim of the present study was to investigate whether epigenetic mechanisms are involved in controlling the onset and progression of the systemic inflammatory response. Using chromatin accessibility by real-time (CHART) PCR to assess livers from cows with experimentally induced Escherichia coli mastitis, this study demonstrated that the chromatin at the site of the promoters of the genes encoding TLR2, TLR4, lipopolysaccharide binding protein (LBP) and haptoglobin (HP) was opened up 24 h after infection, accompanied by enhanced mRNA expression by these genes. Such modulation did not occur in the same samples for the αS1-casein promoter, which served as a negative control. Demethylation of the TLR4 promoter accompanied opening up of chromatin. These data suggest that modulation of epigenetic factors might offer a novel approach to treating adverse systemic reactions elicited in cows with E. coli mastitis.


Oncotarget | 2015

Hepatic TLR4 signaling is activated by LPS from digestive tract during SARA, and epigenetic mechanisms contribute to enforced TLR4 expression

Guangjun Chang; Su Zhuang; Hans-Martin Seyfert; Kai Zhang; Tianle Xu; Di Jin; Junfei Guo; Xiangzhen Shen

Subacute ruminal acidosis (SARA) is known to trigger a systemic inflammatory response that is possibly caused by the translocationof lipopolysaccharides (LPS) from the gastrointestinal tract into the bloodstream. The aim of this study is to investigate this causal relationship between the increases of circulating LPS and liver inflammation. Here we found that SARA goats exhibited significantly increased LPS concentrations in both the rumen and portal vein. The livers of these goats exhibited increased mRNA concentrations of pro-inflammatory genes that indicated inflammation. Meanwhile, the occurrence of liver inflammation was further validated by the enhanced protein expression of those cytokines in the livers of SARA goats. These increased expressions of detected pro-inflammatory genes were likely mediated by enforced TLR4 signaling because SARA increased the concentrations of TLR4 mRNA and protein in the liver and the abundance of both the NF-kB-p65 factor and its active phosphorylated variant. We also verified that the enhanced TLR4 expression was accompanied by chromatin decompaction and demethylation of the proximal TLR4 promoter. Hence, epigenetic mechanisms are involved in the enforced expression of immune genes during SARA, and these findings open innovative routes for interventions via the modulation of these epigenetic mechanisms.


PLOS ONE | 2014

High Concentrate Diet Induced Mucosal Injuries by Enhancing Epithelial Apoptosis and Inflammatory Response in the Hindgut of Goats

Shiyu Tao; Yongqian Duanmu; Haibo Dong; Yingdong Ni; Jie Chen; Xiangzhen Shen; Ruqian Zhao

Purpose It is widely accepted that lipopolysaccharide and volatile fatty acids (VFA) accumulate in the digestive tract of ruminants fed diets containing high portions of grain. Compared to the ruminal epithelium, the hindgut epithelium is composed of a monolayer structure that is more “leaky” for lipopolysaccharide and susceptible to organic acid-induced damage. The aim of this study was to investigate changes in epithelial structure, apoptosis and inflammatory response in the hindgut of goats fed a high-concentrate diet for 6 weeks. Experimental Design Eight local Chinese goats with rumen cannulas were randomly assigned to two groups: one group was fed a high-concentrate diet (65% concentrate of dry matter, HC) and the other group was fed a low-concentrate diet (35% concentrate of dry matter, LC) for 6 wks. Ruminal fluid, plasma, and hindgut mucosa tissues were collected. Histological techniques, real-time PCR and western blotting were used to evaluate the tissues structure, cell apoptosis and local inflammation in the hindguts. Results Feeding HC diet for 6 wks resulted in a significant decrease of ruminal pH (p<0.01), and ruminal lipopolysaccharide concentrations were significantly increased in HC goats (p<0.05). Obvious damage was observed to mucosal epithelium of the hindgut and the intercellular tight junctions in HC, but not in LC, goats. The expression of MyD88 and caspase-8 mRNA was increased in colonic epithelium of HC goats compared to LC (p<0.05), and the expression of TLR-4 and caspase-3 showed a tendency to increase. In the cecum, interleukin-1β mRNA expression was decreased (p<0.05), and caspase-3 showed a potential increase (p = 0.07) in HC goats. The level of NF-κB protein was increased in colonic epithelium of HC goats. Caspase-3 activity was elevated in both colon and cecum, whereas caspase-8 activity was statistically increased only in colon. Conclusions Feeding a high-concentrate diet to goats for 6 wks led to hindgut mucosal injuries via activating epithelial cells apoptosis and local inflammatory response.


Journal of Dairy Science | 2017

Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet

Juma Ahamed Abaker; Tianle Xu; Di Jin; Guangjun Chang; Kai Zhang; Xiangzhen Shen

The aims of this study were to measure oxidative stress parameters and to investigate the molecular mechanism triggered by grain-induced subacute ruminal acidosis in mid-lactation cows. Twelve Holstein-Friesian cows with an average weight of 455±28kg were divided into 2 groups and subjected to 2 diets over 18wk: either a low-grain (forage-to-concentrate ratio=6:4) or a high-grain (forage-to-concentrate ratio=4:6) diet based on dry matter. Being fed a long-term high-grain diet resulted in a significant decrease in rumen pH and a significant increase in ruminal lipopolysaccharide (LPS) at 4 h postfeeding in the morning. The increase was also observed in LPS concentrations in the portal vein, hepatic vein, and jugular vein blood plasma as well as reduced milk yield in a high-grain diet. Cows fed a high-grain diet had lower levels of catalase and glutathione peroxidase (GPx) activity and total antioxidant capacity than cows fed a low-grain diet; however, super oxide dismutase (SOD) activity and malondialdehyde (MDA) levels were higher in both the liver and the plasma of high-grain than in low-grain cows. Positive correlations were observed between plasma LPS versus hepatic MDA, plasma MDA, and hepatic SOD activity, whereas hepatic GPx and plasma GPx were negatively correlated with plasma LPS. The relative mRNA abundances of GPX1 and CAT were significantly lower in the liver of cows fed a high-grain diet than those fed a low-grain diet, whereas SOD1 was significantly higher in cows fed a high-grain diet than cows fed a low-grain diet. The expression levels of Nrf2, NQO1, MT1E, UGT1A1, MGST3, and MT1A were downregulated, whereas NF-kB was upregulated, in cows fed a high-grain diet. Furthermore, nuclear factor E2-related factor 2 (Nrf2) total protein and mRNA levels were significantly lower than in low-grains. Our results demonstrate the relationship between the translocated LPS and the suppression of cellular antioxidant defense capacity, which lead to increased oxidative stress and suggests that the Nrf2-dependent antioxidant response may be affected by higher levels of LPS translocated to the bloodstream.


Oncotarget | 2016

Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows.

Kai Zhang; Guangjun Chang; Tianle Xu; Lei Xu; Junfei Guo; Di Jin; Xiangzhen Shen

To meet the nutrition requirements of lactation, dairy cows are usually fed a high concentrate diet (HC). However, high-grain feeding causes subacute ruminal acidosis (SARA), a metabolic disorder that causes milk protein depression. This study aimed to investigate the effect of lipopolysaccharide (LPS) released in the rumen on inflammatory gene expression and casein synthesis in mammary glands of lactating dairy cows fed a HC diet. We found that milk protein was significantly decreased in the HC group after 15 weeks of feeding. Overall, LPS concentrations in the rumen fluid, lacteal artery and vein were increased in the HC group. Transcriptome microarray was used to evaluate alterations in the signaling pathway in mammary glands. Signaling pathways involved in inflammatory responses were activated, whereas those involved in protein synthesis were inhibited in the HC group. mRNA expression involved in inflammatory responses, including that of TLR4, NF-кB and pro-inflammatory genes, was increased in the HC group, while αs1-casein (CSN1S1), β-casein (CSN2), mTOR and S6K gene expression were decreased. Moreover, protein expression was consistent with the corresponding gene expression. After feeding with an HC diet, LPS derived from the rumen increased inflammatory gene expression and inhibited casein synthesis in the mammary glands of lactating dairy cows fed a HC diet.


PLOS ONE | 2015

Feeding a High Concentrate Diet Down-Regulates Expression of ACACA, LPL and SCD and Modifies Milk Composition in Lactating Goats

Hui Tao; Guangjun Chang; Tianle Xu; Huajian Zhao; Kai Zhang; Xiangzhen Shen

High concentrate diets are fed to early and mid-lactation stages dairy ruminants to meet the energy demands for high milk production in modern milk industry. The present study evaluated the effects of a high concentrate diet on milk fat and milk composition, especially, cis-9, trans-11 CLA content in milk and gene expression of lactating goats. Eight mid-lactating goats with rumen fistula were randomly assigned into a high concentrate diet (HCD) group and low concentrate diet (LCD) group. High concentrate diet feeding significantly increased lipopolysaccharides (LPS) in plasma and decreased milk fat content, vaccenic acid (VA) and cis-9, trans-11 CLA in milk of the lactating goats. The mRNA expression levels of sterol regulatory element binding protein B 1c (SREBP1c), lipoprotein lipase (LPL), fatty acid synthetase (FASN) and acetyl-CoA carboxylase α (ACACA, ACCα) involving in lipid metabolism were analyzed, and ACACA and LPL all decreased in their expression level in the mammary glands of goats fed a high concentrate diet. DNA methylation rate of stearoyl-CoA desaturase (SCD) was elevated and decreased, and SCD mRNA and protein expression was reduced significantly in the mammary glands of goats fed a high concentrate diet. In conclusion, feeding a high concentrate diet to lactating goats decreases milk fat and reduced expression of SCD in the mammary gland, which finally induced cis-9, trans-11 CLA content in milk.


BMC Molecular Biology | 2016

Stearoyl-CoA desaturase 1 expression is downregulated in liver and udder during E. coli mastitis through enhanced expression of repressive C/EBP factors and reduced expression of the inducer SREBP1A

Tianle Xu; Xiangzhen Shen; Hans-Martin Seyfert

BackgroundStearoyl-CoA desaturase 1 (SCD1) desaturates long chain fatty acids and is therefore a key enzyme in fat catabolism. Its synthesis is downregulated in liver during illnesses caused by high levels of circulating lipopolysaccharide (LPS). SCD1 expression is known to be stimulated under adipogenic conditions through a variety of transcription factors, notably SREBP1 and C/EBPα and −β. However, mechanisms downregulating SCD1 expression during illness related reprograming of the metabolism were unknown. Escherichia coli elicited mastitis is an example of such a condition and was found to downregulates milk and milk fat synthesis. This is in part mediated through epigenetic mechanisms. We analyzed here mechanism controlling SCD1 expression in livers and udders from cows suffering from experimentally induced E. coli mastitis.ResultsWe validated with RT-qPCR that SCD1 expression was reduced in these organs of the experimental cows. They also featured decreased levels of mRNAs encoding SREBP1a but increased levels for C/EBP α and −β. Chromatin accessibility PCR (CHART) revealed that downregulation of SCD1 expression in liver was not caused by tighter chromatin compaction of the SCD1 promoter. Reporter gene analyses showed in liver (HepG2) and mammary epithelial (MAC-T) model cells that overexpression of SREBP1a expectedly activated the promoter, while unexpectedly C/EBPα and −β strongly quenched the promoter activity. Abrogation of two from among of the three C/EBP DNA-binding motifs of the promoter revealed that C/EBPα acts in cis but C/EBPβ in trans. Overexpressing truncated C/EBPα or −β factors lacking their repressive domains confirmed in both model cells the direct action of C/EBPα, but not of C/EBPβ on the promoter.ConclusionsWe found no evidence that epigenetic mechanism remodeling the chromatin compaction of the SCD1 promoter would contribute to downregulate SCD1 expression during infection. Instead, our data show for the first time that C/EBP factors may repress SCD1 expression in liver and udder rather than stimulating as it was previously shown in adipocytes. This cell type specific dual and opposite function of C/EBP factors for regulating SCD1 expression was previously unknown. Infection related activation of their expression combined with downregulated expression of SREBP1a explains reduced SCD1 expression in liver and udder during acute mastitis.


Oncotarget | 2017

Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet

Junfei Guo; Guangjun Chang; Kai Zhang; Lei Xu; Di Jin; Muhammad Shahid Bilal; Xiangzhen Shen

Rumen-derived lipopolysaccharide (LPS) is translocated from the rumen into the bloodstream when subacute ruminal acidosis (SARA) occurs following long-term feeding with a high-concentrate (HC) diet in dairy cows. The objective of this study was to investigate the mechanism of inflammatory responses in the liver caused by HC diet feeding. We found that SARA was induced in dairy cows when rumen pH below 5.6 lasted for at least 3 h/d with HC diet feeding. Also, the LPS levels in the portal and hepatic veins were increased significantly and hepatocytes were impaired as well as the liver function was inhibited during SARA condition. Meanwhile, the mRNA expression of immune genes including TNF receptor associated factor 6 (TRAF6), nuclear factor-kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinases (ERK) MAPK, Interleukin-1 (IL-1) and serum amyloid A (SAA) in the liver were significantly increased in SARA cows. Moreover, the phosphorylation level of NF-κB p65 and p38 MAPK proteins in the liver and the concentration of Tumor Necrosis Factor (TNF-α), Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) in peripheral blood were obviously increased under SARA condition. In conclusion, the inflammatory injury in the liver caused by LPS that traveled from the digestive tract to the liver through the portal vein after feeding with a HC diet.

Collaboration


Dive into the Xiangzhen Shen's collaboration.

Top Co-Authors

Avatar

Guangjun Chang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tianle Xu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kai Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongyu Dai

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Di Jin

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Juma Ahamed Abaker

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Shahid Bilal

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junfei Guo

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Nana Ma

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinxin Liu

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge