Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianji Piao is active.

Publication


Featured researches published by Xianji Piao.


Nature Communications | 2013

Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves

Xiaoshu Chen; Hyeong Ryeol Park; Matthew Pelton; Xianji Piao; Nathan C. Lindquist; Hyungsoon Im; Yun Jung Kim; Jae Sung Ahn; Kwang Jun Ahn; Namkyoo Park; Dai-Sik Kim; Sang Hyun Oh

Squeezing light through nanometre-wide gaps in metals can lead to extreme field enhancements, nonlocal electromagnetic effects and light-induced electron tunnelling. This intriguing regime, however, has not been readily accessible to experimentalists because of the lack of reliable technology to fabricate uniform nanogaps with atomic-scale resolution and high throughput. Here we introduce a new patterning technology based on atomic layer deposition and simple adhesive-tape-based planarization. Using this method, we create vertically oriented gaps in opaque metal films along the entire contour of a millimetre-sized pattern, with gap widths as narrow as 9.9 Å, and pack 150,000 such devices on a 4-inch wafer. Electromagnetic waves pass exclusively through the nanogaps, enabling background-free transmission measurements. We observe resonant transmission of near-infrared waves through 1.1-nm-wide gaps (λ/1,295) and measure an effective refractive index of 17.8. We also observe resonant transmission of millimetre waves through 1.1-nm-wide gaps (λ/4,000,000) and infer an unprecedented field enhancement factor of 25,000.


Optics Express | 2012

Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator

Xianji Piao; Sunkyu Yu; Namkyoo Park

In this paper, we derive a governing equation for spectral asymmetry in electromagnetically induced transparency (EIT). From the key parameters of asymmetry factor - namely dark mode quality factor Q(d), and frequency separation between bright and dark mode Δω(bd) = (ω(b) - ω(d)) -, a logical pathway for the maximization of EIT asymmetry is identified. By taking the plasmonic metal-insulator-metal (MIM) waveguide as a platform, a plasmon-induced transparency (PIT) structure of tunable frequency separation Δω(bd) and dark mode quality factor Q(d) is suggested and analyzed. Compared to previous works on MIM-based plasmon modulators, an order of increase in the performance Fig. (12dB contrast at ~60% throughput) was achieved from the highly asymmetric, narrowband PIT spectra.


Nano Letters | 2014

Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas

Heiko Kollmann; Xianji Piao; Martin Esmann; Simon F. Becker; Dongchao Hou; Chuong Huynh; Lars-Oliver Kautschor; Guido Bösker; Henning Vieker; André Beyer; Armin Gölzhäuser; Namkyoo Park; Ralf Vogelgesang; Martin Silies; Christoph Lienau

Plasmonic nanoantennas are versatile tools for coherently controlling and directing light on the nanoscale. For these antennas, current fabrication techniques such as electron beam lithography (EBL) or focused ion beam (FIB) milling with Ga(+)-ions routinely achieve feature sizes in the 10 nm range. However, they suffer increasingly from inherent limitations when a precision of single nanometers down to atomic length scales is required, where exciting quantum mechanical effects are expected to affect the nanoantenna optics. Here, we demonstrate that a combined approach of Ga(+)-FIB and milling-based He(+)-ion lithography (HIL) for the fabrication of nanoantennas offers to readily overcome some of these limitations. Gold bowtie antennas with 6 nm gap size were fabricated with single-nanometer accuracy and high reproducibility. Using third harmonic (TH) spectroscopy, we find a substantial enhancement of the nonlinear emission intensity of single HIL-antennas compared to those produced by state-of-the-art gallium-based milling. Moreover, HIL-antennas show a vastly improved polarization contrast. This superior nonlinear performance of HIL-derived plasmonic structures is an excellent testimonial to the application of He(+)-ion beam milling for ultrahigh precision nanofabrication, which in turn can be viewed as a stepping stone to mastering quantum optical investigations in the near-field.


Optics Express | 2011

Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures

Xianji Piao; Sunkyu Yu; Sukmo Koo; Kwanghee Lee; Namkyoo Park

We use coupled mode theory (CMT) to analyze a metal-insulator-metal (MIM) plasmonic stub structure, to reveal the existence of asymmetry in its transmittance spectra. Including the effect of the near field contribution for the stub structure, the observed asymmetry is interpreted as Fano-type interference between the quasi-continuum T-junction-resonator local-modes and discrete stub eigenmodes. Based on the asymmetry factor derived from the CMT analysis, methods to control transmittance asymmetry are also demonstrated.


Optics Express | 2010

Out of plane mode conversion and manipulation of Surface Plasmon Polariton Waves

Kumar Ms; Xianji Piao; Sukmo Koo; Sunkyu Yu; Namkyoo Park

We propose a rigorous design method of structured gratings for out of plane mode conversion, line focusing and manipulation of Surface Plasmon Polariton (SPP) waves. Employing a blazed grating to incorporate the directionality of SPP launch, and at the same time controlling grating depth and chirp to account for the radiation loss and diffraction angle, it was possible to achieve high efficiency and flexible SPP to freespace mode conversion. Devices with advanced functionalities, such as balanced SPP power splitter, and SPP wavelength demultiplexer are demonstrated with over 75% of power efficiencies at reasonable working distances of less than several wavelengths.


Physical Review A | 2015

Progress toward high-Q perfect absorption: A Fano antilaser

Sunkyu Yu; Xianji Piao; Jiho Hong; Namkyoo Park

Here we propose a route to the high-Q perfect absorption of light by introducing the concept of a Fano anti-laser. Based on the drastic spectral variation of the optical phase in a Fano-resonant system, a spectral singularity for scatter-free perfect absorption can be achieved with an order of magnitude smaller material loss. By applying temporal coupled mode theory to a Fano-resonant waveguide platform, we reveal that the required material loss and following absorption Q-factor are ultimately determined by the degree of Fano spectral asymmetry. The feasibility of the Fano anti-laser is confirmed using a photonic crystal platform, to demonstrate spatio-spectrally selective heating. Our results utilizing the phase-dependent control of device bandwidths derive a counterintuitive realization of high-Q perfect conversion of light into internal energy, and thus pave the way for a new regime of absorption-based devices, including switches, sensors, thermal imaging, and opto-thermal emitters.


Science Advances | 2016

Metadisorder for designer light in random systems

Sunkyu Yu; Xianji Piao; Jiho Hong; Namkyoo Park

We propose the concept of metadisorder for globally collective and small-world–like waves in randomly coupled systems. Disorder plays a critical role in signal transport by controlling the correlation of a system, as demonstrated in various complex networks. In wave physics, disordered potentials suppress wave transport, because of their localized eigenstates, from the interference between multiple scattering paths. Although the variation of localization with tunable disorder has been intensively studied as a bridge between ordered and disordered media, the general trend of disorder-enhanced localization has remained unchanged, and the existence of complete delocalization in highly disordered potentials has not been explored. We propose the concept of “metadisorder”: randomly coupled optical systems in which eigenstates can be engineered to achieve unusual localization. We demonstrate that one of the eigenstates in a randomly coupled system can always be arbitrarily molded, regardless of the degree of disorder, by adjusting the self-energy of each element. Ordered waves with the desired form are then achieved in randomly coupled systems, including plane waves and globally collective resonances. We also devise counterintuitive functionalities in disordered systems, such as “small-world–like” transport from non–Anderson-type localization, phase-conserving disorder, and phase-controlled beam steering.


arXiv: Optics | 2016

Low-dimensional optical chirality in complex potentials

Sunkyu Yu; Hyun Sung Park; Xianji Piao; Bumki Min; Namkyoo Park

Chirality is a universal feature in nature, as observed in fermion interactions and DNA helicity. Much attention has been given to chiral interactions of light, not only regarding its physical interpretation but also focusing on intriguing phenomena in excitation, absorption, refraction, and topological phase. Although recent progress in metamaterials has spurred artificial engineering of chirality, most approaches are founded on the same principle of the mixing of electric and magnetic responses. Here we propose nonmagnetic chiral interactions of light based on low-dimensional eigensystems. Exploiting the mixing of amplifying and decaying electric modes in a complex material, the low-dimensionality in polarization space having a chiral eigenstate is realized, in contrast to 2-dimensional eigensystems in previous approaches. The existence of optical spin black hole from low-dimensional chirality is predicted, and singular interactions between chiral waves are confirmed experimentally in parity-time-symmetric metamaterials.


Optics Express | 2015

One-way optical modal transition based on causality in momentum space.

Sunkyu Yu; Xianji Piao; Kyungwan Yoo; Jonghwa Shin; Namkyoo Park

The concept of parity-time (PT) symmetry has been used to identify a route toward unidirectional dynamics in optical k-space: imposing asymmetry on the flow of light. Although PT-symmetric potentials have been implemented under the requirement of V(x) = V*(-x), this precondition has only been interpreted within the mathematical framework for the symmetry of Hamiltonians and has not been directly linked to unidirectionality induced by PT symmetry. In this paper, within the context of light-matter interactions, we develop an alternative route toward unidirectionality in k-space by employing the concept of causality. We demonstrate that potentials with real and causal momentum spectra produce unidirectional transitions of optical modes inside the k-continuum, which corresponds to an exceptional point on the degree of PT symmetry. Our analysis reveals a critical link between non-Hermitian problems and spectral theory and also enables multi-dimensional designer manipulation of optical modes, in contrast to the one-dimensional approach that used a Schrödinger-like equation in previous PT-symmetric optics.


Scientific Reports | 2016

Acceleration toward polarization singularity inspired by relativistic E×B drift

Sunkyu Yu; Xianji Piao; Namkyoo Park

The relativistic trajectory of a charged particle driven by the Lorentz force is different from the classical one, by velocity-dependent relativistic acceleration term. Here we show that the evolution of optical polarization states near the polarization singularity can be described in analogy to the relativistic dynamics of charged particles. A phase transition in parity-time symmetric potentials is then interpreted in terms of the competition between electric and magnetic ‘pseudo’-fields applied to polarization states. Based on this Lorentz pseudo-force representation, we reveal that zero Lorentz pseudo-force is the origin of recently reported strong polarization convergence to the singular state at the exceptional point. We also demonstrate the deterministic design of achiral and directional eigenstates at the exceptional point, allowing an anomalous linear polarizer which operates orthogonal to forward and backward waves. Our results linking parity-time symmetry and relativistic electrodynamics show that previous PT-symmetric potentials for the polarization singularity with a chiral eigenstate are the subset of optical potentials for the E×B “polarization” drift.

Collaboration


Dive into the Xianji Piao's collaboration.

Top Co-Authors

Avatar

Namkyoo Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sunkyu Yu

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jiho Hong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sukmo Koo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Mason

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge