Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianjin Zhou is active.

Publication


Featured researches published by Xianjin Zhou.


Current topics in behavioral neurosciences | 2010

Animal Models of Schizophrenia

Jared W. Young; Xianjin Zhou; Mark A. Geyer

Schizophrenia may well represent one of the most heterogenous mental disorders in human history. This heterogeneity encompasses (1) etiology; where numerous putative genetic and environmental factors may contribute to disease manifestation, (2) symptomatology; with symptoms characterized by group; positive--behaviors not normally present in healthy subjects (e.g. hallucinations), negative--reduced expression of normal behaviors (e.g. reduced joy), and cognitive--reduced cognitive capabilities separable from negative symptoms (e.g. impaired attention), and (3) individual response variation to treatment. The complexity of this uniquely human disorder has complicated the development of suitable animal models with which to assay putative therapeutics. Moreover, the development of animal models is further limited by a lack of positive controls because currently approved therapeutics only addresses psychotic symptoms, with minor negative symptom treatment. Despite these complexities however, many animal models of schizophrenia have been developed mainly focusing on modeling individual symptoms. Validation criteria have been established to assay the utility of these models, determining the (1) face, (2) predictive, (3) construct, and (4) etiological validities, as well as (5) reproducibility of each model. Many of these models have been created following the development of major hypotheses of schizophrenia, including the dopaminergic, glutamatergic, and neurodevelopmental hypotheses. The former two models have largely consisted of manipulating these neurotransmitter systems to produce behavioral abnormalities with some relevance to symptoms or putative etiology of schizophrenia. Given the serotonergic link to hallucinations and cholinergic link to attention, other models have manipulated these systems also. Finally, there has also been a drive toward creating mouse models of schizophrenia utilizing transgenic technology. Thus, there are opportunities to combine both environmental and genetic factors to create more suitable models of schizophrenia. More sophisticated animal tasks are also being created with which to ascertain whether these models produce behavioral abnormalities consistent with patients with schizophrenia. While animal models of schizophrenia continue to be developed, we must be cognizant that (1) validating these models are limited to the degree by which Clinicians can provide relevant information on the behavior of these patients, and (2) any putative treatments that are developed are also likely to be given with concurrent antipsychotic treatment. While our knowledge of this devastating disorder increases and our animal models and tasks with which to measure their behaviors become more sophisticated, caution must still be taken when validating these models to limit complications when introducing putative therapeutics to human trials.


Molecular Psychiatry | 2005

Reduced expression of the Sp4 gene in mice causes deficits in sensorimotor gating and memory associated with hippocampal vacuolization.

Xianjin Zhou; J M Long; Mark A. Geyer; Eliezer Masliah; John R. Kelsoe; Anthony Wynshaw-Boris; K R Chien

Hf-1b/Sp4, a member of the Sp1 family of transcription factors, is expressed restrictively in the developing nervous system and most abundantly in adult hippocampus in mice. Here, we report the generation of hypomorphic Sp4 allele mice, in which the Sp4 deficiency can be rescued by the expression of Cre recombinase. Vacuolization was detected in the hippocampal gray matter of the mutant Sp4-deficient mice. Expression analysis of Sp4 mutant hippocampi revealed an age-dependent decrease in neurotrophin-3 expression in the dentate granule cells. Hypomorphic Sp4 mutant mice displayed robust deficits in both sensorimotor gating and contextual memory. The restoration of Sp4 expression, via a Cre-dependent rescue strategy, completely rescued all the observed molecular, histological and behavioral abnormalities. Our studies thus reveal a novel Sp4 pathway that is essential for hippocampal integrity and modulates behavioral processes relevant to psychiatric disorders.


Behavioural Brain Research | 2011

The effect of reduced dopamine D4 receptor expression in the 5-choice continuous performance task: Separating response inhibition from premature responding.

Jared W. Young; Susan B. Powell; Christine N. Scott; Xianjin Zhou; Mark A. Geyer

Impairments in attention/vigilance and response disinhibition are commonly observed in several neuropsychiatric disorders. Validating animal models could help in developing therapeutics for cognitive deficits and improving functional outcomes in such disorders. The 5-choice continuous performance test (5C-CPT) in mice offers the opportunity to assess vigilance and two forms of impulsivity. Since reduced dopamine D4 receptor (DRD4) function is implicated in several disorders, DRD4 is a potential therapeutic target for cognition enhancement. We trained wildtype (WT), heterozygous (HT), and knockout (KO) mice of the murine Drd4 to perform the 5C-CPT under baseline and variable stimulus duration conditions. To dissect motor impulsivity (premature responding) from behavioral disinhibition (false alarms), we administered the 5-HT(2C) antagonist SB242084 during an extended inter-trial-interval session. We also examined the preattentive and exploratory profile of these mice in prepulse inhibition (PPI) and the Behavioral Pattern Monitor (BPM). Reduced Drd4 expression in HT mice, as confirmed by quantitative RT-PCR, resulted in response disinhibition and impaired 5C-CPT performance, while premature responding was unaffected. Conversely, SB242084 increased premature responding without affecting response inhibition or attentional measures. No genotypic differences were observed in PPI or BPM behavior. Thus, reduced Drd4 expression impairs attentional performance, but not other behaviors associated with neuropsychiatric disorders. Moreover, the use of signal and non-signal stimuli in the 5C-CPT enabled the differentiation of response disinhibition from motor impulsivity in a vigilance task.


Genes, Brain and Behavior | 2007

Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice

Xianjin Zhou; Y. Qyang; John R. Kelsoe; E. Masliah; Mark A. Geyer

Sp4, a member of the Sp1 family of transcription factors, is expressed restrictively in the developing nervous system and abundantly in the hippocampus. Previously, we demonstrated that hypomorphic Sp4 mice display hippocampal vacuolization and concomitant deficits in memory and sensorimotor gating. Here, we report further analyses of Sp4 functions during postnatal development of the dentate gyrus in Sp4 null mutant mice. A reduced cell proliferation restrictively in hippocampus, but not cerebellum, was observed in the first week of postnatal development of Sp4 null mutant mice. The dendritic growth and arborization of dentate granule cells was decreased in hippocampal cultures in vitro from mutant neonatal mice. The adult Sp4 null mutant mice displayed decreased dentate granule cell density with reduced width of both dentate gyrus and the molecular layer. The abnormality of the molecular layer was indicated by a reduced level of synaptophysin expression in the mutant mice. The Sp4 transcription factor therefore appears to predominantly regulate the development of dentate granule cells.


PLOS ONE | 2009

Transcription Factor SP4 Is a Susceptibility Gene for Bipolar Disorder

Xianjin Zhou; Wei Tang; Tiffany A. Greenwood; Shengzhen Guo; Lin He; Mark A. Geyer; John R. Kelsoe

The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, p = 0.022; rs12673091, p = 0.0005; rs3735440, p = 0.019; rs11974306, p = 0.018). To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, p = 0.009; rs12673091, p = 0.002; rs1018954, p = 0.001; rs3735440, p = 0.029), and two of them (rs12673091, rs3735440) were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, p = 0.012) also displayed a significant association. The SNP7 (rs12673091) was therefore significantly associated in all three samples, and shared the same susceptibility allele (A) across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these psychiatric disorders.


Molecular Psychiatry | 2010

Insoluble DISC1–Boymaw fusion proteins

Xianjin Zhou; Q. C. Chen; K Schaukowitch; John R. Kelsoe; Mark A. Geyer

The DISC1 translocation generates two types of fusion transcripts between DISC1 and Boymaw genes. The punctuate staining of DISC1–Boymaw fusion proteins expressed in the cytoplasm and neuronal processes of hippocampal neuronal cells. The Boymaw–DISC1 fusion transcripts produce abundant DISC1 C-terminal proteins. For further information on this topic, please refer to the article by Zhou et al. on pages 670–671. Molecular Psychiatry (2010) 15, 669 & 2010 Macmillan Publishers Limited All rights reserved 1359-4184/10


Human Molecular Genetics | 2010

Reduced NMDAR1 expression in the Sp4 hypomorphic mouse may contribute to endophenotypes of human psychiatric disorders

Xianjin Zhou; Zhiguo Nie; Amanda J. Roberts; Dongxian Zhang; Jonathan Sebat; Dheeraj Malhotra; John R. Kelsoe; Mark A. Geyer

The reduced expression of the Sp4 gene in Sp4 hypomorphic mice resulted in subtle vacuolization in the hippocampus as well as deficits in sensorimotor gating and contextual memory, putative endophenotypes for schizophrenia and other psychiatric disorders. In this study, we examined both spatial learning/memory and hippocampal long-term potentiation (LTP) of Sp4 hypomorphic mice. Impaired spatial learning/memory and markedly reduced LTP were found. To corroborate the functional studies, the expression of N-methyl-D-aspartate (NMDA) glutamate receptors was investigated with both western blot and immunohistochemical analyses. The reduced expression of the Sp4 gene decreased the level of the NR1 subunit of NMDA receptors in Sp4 hypomorphic mice. In human, SP4 gene was found to be deleted sporadically in schizophrenia patients, corroborating evidence that polymorphisms of human SP4 gene are associated with schizophrenia and other psychiatric disorders. Impaired NMDA neurotransmission has been implicated in several human psychiatric disorders. As yet, it remains unclear how mutations of candidate susceptibility genes for these disorders may contribute to the disruption of NMDA neurotransmission. Sp4 hypomorphic mice could therefore serve as a genetic model to investigate impaired NMDA functions resulting from loss-of-function mutations of human SP4 gene in schizophrenia and/or other psychiatric disorders. Furthermore, aberrant expression of additional genes, besides NMDAR1, likely also contributes to the behavioral abnormalities in Sp4 hypomorphic mice. Thus, further investigation of the Sp4 pathway may provide novel insights in our understanding of a variety of neuropsychiatric disorders.


Neuropsychopharmacology | 2014

Generation and Characterization of Humanized Mice Carrying COMT158 Met/Val Alleles

Victoria B. Risbrough; Baohu Ji; Richard L. Hauger; Xianjin Zhou

The Val158Met polymorphism of human catechol-o-methyltransferase (COMT) is one of the most well-studied single-nucleotide polymorphisms in neuropsychiatry; however, findings are inconsistent due to human genetic heterogeneity. We created the first ‘humanized’ COMTVal158Met mouse lines, which carry either human COMT Val or Met alleles via gene targeting. The ‘humanized’ mouse model enables strict comparison of the physiological functions of the two alleles. Consistent with human observation, Met/Met mice exhibited a 30% reduction in enzymatic activity compared with Val/Val mice. On the basis of the reported differences in human Met and Val carriers across working memory, fear processes and sensorimotor gating, we examined these functions between sibling Met/Met and Val/Val mice. Val/Val mice exhibited robust reductions in spatial working memory compared with Met/Met mice in both sexes, with tolcapone treatment significantly reversing the Val/Val alternation deficits. Sex effects were observed in other behaviors, with male Val/Val mice exhibited lower prepulse inhibition compared with Met/Met mice, whereas female mice exhibited the opposite phenotype. Female but not male Met/Met mice exhibited reduced contextual fear, increased cued fear, and reduced extinction recall. Thus, these mice (1) support the argument that human COMT Val158Met polymorphism modulates behavioral functions and most importantly (2) exhibit the expected treatment effects supporting the ‘inverted U shaped’ dose response of catecholamine signaling on cognitive function. This model will be invaluable for understanding the effects of human COMT Val158Met polymorphism on cortical development and behavioral functions, and how this polymorphism modulates treatment response.


Biological Psychiatry | 2008

Promoter Variant in the GRK3 Gene Associated with Bipolar Disorder Alters Gene Expression

Xianjin Zhou; Thomas B. Barrett; John R. Kelsoe

BACKGROUND We have previously reported a single nucleotide polymorphism (P-5, G-384A) in the proximal promoter of the gene for G protein receptor kinase 3 (GRK3) that was associated with bipolar disorder in two independent samples. In this study, we examined whether the G-384A variant has a functional effect on GRK3 transcription. METHODS Electrophoretic mobility shift assays were conducted using nuclear extracts from both Hela cells and adult mouse cortex. Transcriptional function was also examined using a dual luciferase reporter system transfected into in vitro human neuroblastoma cells and cultured mouse cortical neurons. RESULTS The G-384A variant abolished or reduced the formation of DNA-protein complexes using nuclear extract from both HeLa cells and adult mouse cortical neuron cells. However, gene expression was significantly enhanced by G-384A in both in vitro human neuroblastoma cells and cultured mouse cortical neurons. CONCLUSIONS These data suggest that the G-384A SNP in the promoter of human GRK3 gene represents an important functional variant. The G-384A variant may alter binding of Sp1/Sp4 transcription factors resulting in an increase in gene transcription and an increase in vulnerability to bipolar disorder.


Neuropsychopharmacology | 2015

GlyT-1 Inhibition Attenuates Attentional But Not Learning or Motivational Deficits of the Sp4 Hypomorphic Mouse Model Relevant to Psychiatric Disorders

Jared W. Young; Mary E. Kamenski; Kerin K. Higa; Gregory A. Light; Mark A. Geyer; Xianjin Zhou

Serious mental illness occurs in 25% of the general population, with many disorders being neurodevelopmental, lifelong, and debilitating. The wide variation and overlap in symptoms across disorders increases the difficulty of research and treatment development. The NIMH Research Domain of Criteria initiative aims to improve our understanding of the molecular and behavioral consequences of specific neurodevelopmental mechanisms across disorders, enabling targeted treatment development. The transcription factor Specificity Protein 4 (SP4) is important for neurodevelopment and is genetically associated with both schizophrenia and bipolar disorder. Reduced Sp4 expression in mice (hypomorphic) reproduces several characteristics of psychiatric disorders. We further tested the utility of Sp4 hypomorphic mice as a model organism relevant to psychiatric disorders by assessing cognitive control plus effort and decision-making aspects of approach motivation using cross-species-relevant tests. Sp4 hypomorphic mice exhibited impaired attention as measured by the 5-Choice Continuous Performance Test, an effect that was attenuated by glycine type-1 transporter (GlyT-1) inhibition. Hypomorphic mice also exhibited reduced motivation to work for a reward and impaired probabilistic learning. These deficits may stem from affected anticipatory reward, analogous to anhedonia in patients with schizophrenia and other psychiatric disorders. Neither positive valence deficit was attenuated by GlyT-1 treatment, suggesting that these and the attentional deficits stem from different underlying mechanisms. Given the association of SP4 gene with schizophrenia and bipolar disorder, the present studies provide support that personalized GlyT-1 inhibition may treat attentional deficits in neuropsychiatric patients with low SP4 levels.

Collaboration


Dive into the Xianjin Zhou's collaboration.

Top Co-Authors

Avatar

Mark A. Geyer

University of California

View shared research outputs
Top Co-Authors

Avatar

Baohu Ji

University of California

View shared research outputs
Top Co-Authors

Avatar

John R. Kelsoe

University of California

View shared research outputs
Top Co-Authors

Avatar

Kerin K. Higa

University of California

View shared research outputs
Top Co-Authors

Avatar

Jared W. Young

University of California

View shared research outputs
Top Co-Authors

Avatar

Minjung Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

António Pinto-Duarte

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

M. Margarita Behrens

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terrence J. Sejnowski

Salk Institute for Biological Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge