Xianjun Peng
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xianjun Peng.
Chemical Physics Letters | 2001
J. Zhang; Xianjun Peng; Xuxu Wang; Y. Wang; L. Zhang
Abstract Ordered crystalline GaN nanowires embedded in the nanochannels of anodic alumina membrane (AAM) were achieved by direct reaction Ga with NH 3 . The impact of reaction temperatures on Raman spectroscopic properties of GaN nanowires is investigated. X-ray diffraction and transmission electron microscopy (TEM) observations demonstrate that the crystalline GaN nanowires have hexagonal wurtzite structure. The hexagonal wurtzite structure GaN nanowires prepared at 960 °C are about 40 nm in diameter and up to several hundreds of micrometers in length.
Plant Science | 2011
Man Su; Xiaofeng Li; Xingyong Ma; Xianjun Peng; Aiguo Zhao; Liqin Cheng; Shuangyan Chen; Gongshe Liu
Sweet sorghum (Sorghum bicolor (Linn.) Moench) has promise as a bioenergy feedstock in China and other countries for its use in the production of ethanol as the result of its high fermentable sugar accumulation in stems. To boost biofuel production and extend its range, we seek to improve its stress tolerance. Proline acts as an osmolyte that accumulates when plants are subjected to abiotic stress. P5CS (Δ1-pyrroline-5-carboxylate synthetase) is a key regulatory enzyme that plays a crucial role in proline biosynthesis. We isolated two closely related P5CS genes from sweet sorghum, designated SbP5CS1 (GenBank accession number: GQ377719) and SbP5CS2 (GenBank accession number: GQ377720), which are located on chromosome 3 and 9 and encode 729 and 716 amino acid polypeptides, respectively. The homology between the two sweet sorghum P5CS genes was 76%. Promoter analysis of the two P5CS genes revealed that both sequences not only contained the expected cis regulatory regions such as TATA and CAAT boxes, but also had many stress response elements. Expression analysis revealed that SbP5CS1 and SbP5CS2 transcripts were up-regulated after treatment of 10-day-old seedlings of sweet sorghum with drought, salt (250mM NaCl) and MeJA (10μM). The expression levels of the both SbP5CS genes were significantly increased after 3-day drought stress. Under high salt treatment, peak SbP5CS1 expression was detected at 4h and 8h for SbP5CS2 in roots, while the trends of expression were nearly identical in leaves. In contrast, under drought and high salt stress, the up-regulated expression of SbP5CS1 was higher than that of SbP5CS2. When the seedlings were exposed to MeJA, rapid transcript induction of SbP5CS1 was detected at 2h in leaves, and the SbP5CS2 expression level increase was detected at 4h post-treatment. SbP5CS1 and SbP5CS2 also show different temporal and spatial expression patterns. SbP5CS2 gene was ubiquitously expressed whereas SbP5CS1 was mainly expressed in mature vegetative and reproductive organs. Proline concentration increased after stress application and was correlated with SbP5CS expression. Our results suggest that the SbP5CS1 and SbP5CS2 are stress inducible genes but might play non-redundant roles in plant development. The two genes could have the potential to be used in improving stress tolerance of sweet sorghum and other bioenergy feedstocks.
Plant Cell Tissue and Organ Culture | 2013
Xianjun Peng; Lexin Zhang; Lixing Zhang; Zhujiang Liu; Liqin Cheng; Ying Yang; Shihua Shen; Shuangyan Chen; Gongshe Liu
S-Adenosyl-methionine decarboxylase (SAMDC) and dehydration responsive element-binding proteins (DREBs) can improve plant resistance to abiotic stresses. These proteins have been extensively studied, but the mechanism for transcriptional regulation of SAMDC remains unclear. In this paper, the LcSAMDC2 gene and its promoter were isolated from Leymus chinensis. Two DRE cis-elements were identified from the promoter of LcSAMDC2 and shown to bind with LcDREB2. Subcellular localization and yeast one-hybrid assay revealed that LcDREB2 is a transcription factor. An electrophoretic mobility shift assay (EMSA) showed that LcDREB2 can bind to the LcSAMDC2 promoter probe containing a DRE element. Over-expression of LcDREB2 in L. chinensis callus increased expression of LcSAMDC2. Co-expression of LcDREB2 and the promoter of LcSAMDC2 fused with GUS in tobacco activated GUS activity. These results indicate that LcSAMDC2 is the downstream gene of LcDREB2. In addition, transgenic expression of LcDREB2 and LcSAMDC2 in Arabidopsis can improve the salt stress tolerance of transgenic lines. These results indicate that LcDREB2 cooperating with LcSAMDC2 contributes to resistance to abiotic stress.
Plant Physiology and Biochemistry | 2013
Liqin Cheng; Xiaoxia Li; Xin Huang; Tian Ma; Ye Liang; Xingyong Ma; Xianjun Peng; Junting Jia; Shuangyan Chen; Yan Chen; Bo Deng; Gongshe Liu
Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is a dominant, rhizomatous grass that has extensive plasticity in adapting to various harsh environments. Based on data from 454 high-throughput sequencing (GS FLX) exposure to salt stress, an unknown functional MYB-related gene LcMYB1 was identified from sheepgrass. Tissue specific expression profiles showed that the LcMYB1 gene was expressed ubiquitously in different tissues, with higher expression levels observed in the rhizome and panicle. The expression of LcMYB1 was induced obviously by high salt, drought and abscisic acid and was induced slightly by cold. A fusion protein of LcMYB1 with green fluorescent protein (GFP) was localized to the nucleus, and yeast one-hybrid analysis indicated that LcMYB1 was an activator of transcriptional activity. LcMYB1-overexpressing plants were more tolerant to salt stress than WT plants. The amounts of proline and soluble sugars were higher in transgenic Arabidopsis than in WT plants under salt stress conditions. The overexpression of LcMYB1 enhanced the expression levels of P5CS1 and inhibited other salt stress response gene markers. These findings demonstrate that LcMYB1 influences the intricate salt stress response signaling networks by promoting different pathways than the classical DREB1A- and MYB2-mediated signaling pathway. Additionally, LcMYB1 is a promising gene resource for improving salinity tolerance in crops.
PLOS ONE | 2013
Shuangyan Chen; Xin Huang; Xueqing Yan; Ye Liang; Yuezhu Wang; Xiaofeng Li; Xianjun Peng; Xingyong Ma; Lexin Zhang; Yueyue Cai; Tian Ma; Liqin Cheng; Dongmei Qi; Huajun Zheng; Xiaohan Yang; Xiaoxia Li; Gongshe Liu
Background Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. Results The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. Conclusions This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.
Gene | 2014
Jingwen Sun; Xianjun Peng; Weihong Fan; Mingjuan Tang; Jie Liu; Shihua Shen
The dehydration-responsive element binding proteins (DREBs) are important transcription factors in the regulation of plant responses to abiotic stresses. In this study, BpDREB2, an AP2/DREB-type transcription factor gene, was cloned from a woody plant, Broussonetia papyrifera by RACE-PCR. Sequence analyses revealed that BpDREB2 protein has three characteristic domains, including an AP2/EREBP, a nuclear localization signal and an acidic activation domain. Yeast one-hybrid assays showed that BpDREB2 protein specifically binds to the DRE sequence and activates the expression of reporter genes in yeast. These results suggested that BpDREB2 protein could function as a transcription factor of DREB family. The expression of BpDREB2 gene was remarkably induced by dehydration and high-salt treatments, but no significant change was observed under ABA or low-temperature conditions. Importantly, transgenic expression of BpDREB2 gene in Arabidopsis significantly enhanced its tolerance to salt and freezing without causing growth retardation. Taken together, these results suggested that BpDREB2 is a novel member of the AP2/EREBP trans-acting factor family which could enhance salt stress tolerance of plants and has the potential application in the improvement of crops and economical tree species.
BMC Genomics | 2016
Xianjun Peng; Hui Liu; Dan Wang; Shihua Shen
BackgroundThe MYB family is one of the most abundant transcription factor families in plants. MYB proteins are involved in plant development, abiotic stress tolerance, hormone signal transduction and disease resistance. Here we perform genome-wide identification of MYB family transcription factors in an energy plant J. curcas, including determining family composition, phylogenetic evolution and functional prediction analysis. In addition, we further elucidate the function of the JcMYB2 gene.MethodsThe phylogenetic trees were constructed by using the neighbor-joining method in MEGA 5.2. The biological functions of some JcMYBs were predicted according to orthology. The full length cDNA of JcMYB2 was cloned by using the RACE method. GUS histochemical staining was used to test the activity of the JcMYB2 promoter. Expression patterns of JcMYB2 were detected by using qPCR Transcriptional activity JcMYB2 were confirmed through yeast one hybrid. Subcellular Localization of JcMYB2 Protein were demonstrated by transient expression in the tobacco leaf. The function of JcMYB2 in salt and freezing tolerance were detected in transgenic plants.ResultsA genome-wide analysis identified 128 MYB genes, including 123 R2R3-MYBs, 4 R1R2R3-MYBs and 1 4R-MYB. All of the R2R3-MYBs are further classified into 19 groups which indicated functional conservation among previously identified groups of R2R3-MYB proteins. Among of these newly identified MYBs, the JcMYB2 belongs to group G11 and its expression is induced obviously by cold, salt and MeJA (Methyl Jasmonate) and slightly by ABA (abscisic acid). JcMYB2 is localized to the nucleus and has transcriptional activity. JcMYB2 overexpressing plants are more tolerant to salt and cold stress than wild type plants. Tissue specific expression profiles showed that the JcMYB2 gene was expressed ubiquitously throughout the plant, with higher expression levels observed in the root.ConclusionA comprehensive genome-wide analysis and phylogenetic relationship of R2R3-MYB subfamily in J. curcas present the global identification and functional prediction of JcR2R3-MYBs. Additionally, JcMYB2 regulates the stress response signaling networks by interacting with MeJA and ABA signaling pathway and functions in the root development of J. curcas.
Journal of Plant Physiology | 2017
Zhujiang Liu; Panpan Liu; Dongmei Qi; Xianjun Peng; Gongshe Liu
Leymus chinensis is an important perennial forage grass natively distributed in the Eurasian Steppe. However, little is known about the molecular mechanism of its adaptation to extreme environmental conditions. Based on L. chinensis cold-treated sequence database, a highly expressed S-adenosylmethionine decarboxylase gene (LcSAMDC1) was isolated from L. chinensis. Gene structure analysis showed that LcSAMDC1 has two introns and three exons as well as three non-overlapping ORFs in its mRNA sequence. One hour of cold exposure caused a significant up-regulation of LcSAMDC1, while abscisic acid (ABA), salt, and osmotic stresses slightly induced its expression. Analysis of gene expression in different tissues showed that LcSAMDC1 was expressed ubiquitously, with higher levels in the young spike and rhizome. Overexpression of the main ORF of LcSAMDC1 in transgenic Arabidopsis promoted increased tolerance to cold and salt stress relative to wild type Arabidopsis. The concentration of polyamines, proline, and chlorophyll was significantly higher in transgenic Arabidopsis, and spermine of polyamines increased more under cold than under salt stress. These results suggest that LcSAMDC1 was induced in response to cold and could influence the production of polyamines involved in stress tolerance of L. chinensis. Moreover, transgenic expression of LcSAMDC1 could be used to improve the abiotic resistance of crops.
BMC Genomics | 2014
Qingyuan Zhou; Junting Jia; Xing Huang; Xueqing Yan; Liqin Cheng; Shuangyan Chen; Xiaoxia Li; Xianjun Peng; Gongshe Liu
BackgroundMany Poaceae species show a gametophytic self-incompatibility (GSI) system, which is controlled by at least two independent and multiallelic loci, S and Z. Until currently, the gene products for S and Z were unknown. Grass SI plant stigmas discriminate between pollen grains that land on its surface and support compatible pollen tube growth and penetration into the stigma, whereas recognizing incompatible pollen and thus inhibiting pollination behaviors. Leymus chinensis (Trin.) Tzvel. (sheepgrass) is a Poaceae SI species. A comprehensive analysis of sheepgrass stigma transcriptome may provide valuable information for understanding the mechanism of pollen-stigma interactions and grass SI.ResultsThe transcript abundance profiles of mature stigmas, mature ovaries and leaves were examined using high-throughput next generation sequencing technology. A comparative transcriptomic analysis of these tissues identified 1,025 specifically or preferentially expressed genes in sheepgrass stigmas. These genes contained a significant proportion of genes predicted to function in cell-cell communication and signal transduction. We identified 111 putative transcription factors (TFs) genes and the most abundant groups were MYB, C2H2, C3H, FAR1, MADS. Comparative analysis of the sheepgrass, rice and Arabidopsis stigma-specific or preferential datasets showed broad similarities and some differences in the proportion of genes in the Gene Ontology (GO) functional categories. Potential SI candidate genes identified in other grasses were also detected in the sheepgrass stigma-specific or preferential dataset. Quantitative real-time PCR experiments validated the expression pattern of stigma preferential genes including homologous grass SI candidate genes.ConclusionsThis study represents the first large-scale investigation of gene expression in the stigmas of an SI grass species. We uncovered many notable genes that are potentially involved in pollen-stigma interactions and SI mechanisms, including genes encoding receptor-like protein kinases (RLK), CBL (calcineurin B-like proteins) interacting protein kinases, calcium-dependent protein kinase, expansins, pectinesterase, peroxidases and various transcription factors. The availability of a pool of stigma-specific or preferential genes for L. chinensis offers an opportunity to elucidate the mechanisms of SI in Poaceae.
BMC Plant Biology | 2014
Xianjun Peng; Yucheng Wang; Ruiping He; Meiling Zhao; Shihua Shen
BackgroundThe paper mulberry (Broussonetia papyifera) is one of the multifunctional tree species in agroforestry system and is also commonly utilized in traditional medicine in China and other Asian countries. To identify the transcription factors (TFs) and comprehensively understand their regulatory roles in the growth of the paper mulberry, a global transcriptomics TF prediction and the differential expression analysis among root, shoot and leaf were performed by using RNA-seq.ResultsResults indicate that there is 1,337 TFs encoded by the paper mulberry and they belong to the 55 well-characterized TF families. Based on the phylogenetic analysis, the TFs exist extensively in all organisms are more conservative than those exclusively exist in plant and the paper mulberry has the closest relationship with the mulberry. According to the results of differential expression analysis, there are 627 TFs which exhibit the differential expression profiles in root, shoot and leaf. ARR-Bs, ARFs, NACs and bHLHs together with other root-specific and highly expressed TFs might account for the developed lateral root and unconspicuous taproot in the paper mulberry. Meanwhile, five TCPs highly expressed in shoot of the paper mulberry might negatively regulate the expression of 12 LBDs in shoot. Besides, LBDs, which could directly or indirectly cooperate with ARFs, bHLHs and NACs, seem to be the center knot involving in the regulation of the shoot development in the paper mulberry.ConclusionsOur study provides the comprehensive transcriptomics identification of TFs in the paper mulberry without genome reference. A large number of lateral organ growth regulation related TFs exhibiting the tissue differential expression may entitle the paper mulberry the developed lateral roots, more branches and rapid growth. It will increase our knowledge of the structure and composition of TFs in tree plant and it will substantially contribute to the improving of this tree.BACKGROUND The paper mulberry (Broussonetia papyifera) is one of the multifunctional tree species in agroforestry system and is also commonly utilized in traditional medicine in China and other Asian countries. To identify the transcription factors (TFs) and comprehensively understand their regulatory roles in the growth of the paper mulberry, a global transcriptomics TF prediction and the differential expression analysis among root, shoot and leaf were performed by using RNA-seq. RESULTS Results indicate that there is 1, 337 TFs encoded by the paper mulberry and they belong to the 55 well-characterized TF families. Based on the phylogenetic analysis, the TFs exist extensively in all organisms are more conservative than those exclusively exist in plant and the paper mulberry has the closest relationship with the mulberry. According to the results of differential expression analysis, there are 627 TFs which exhibit the differential expression profiles in root, shoot and leaf. ARR-Bs, ARFs, NACs and bHLHs together with other root-specific and highly expressed TFs might account for the developed lateral root and unconspicuous taproot in the paper mulberry. Meanwhile, five TCPs highly expressed in shoot of the paper mulberry might negatively regulate the expression of 12 LBDs in shoot. Besides, LBDs, which could directly or indirectly cooperate with ARFs, bHLHs and NACs, seem to be the center knot involving in the regulation of the shoot development in the paper mulberry. CONCLUSIONS Our study provides the comprehensive transcriptomics identification of TFs in the paper mulberry without genome reference. A large number of lateral organ growth regulation related TFs exhibiting the tissue differential expression may entitle the paper mulberry the developed lateral roots, more branches and rapid growth. It will increase our knowledge of the structure and composition of TFs in tree plant and it will substantially contribute to the improving of this tree.