nmin Xia
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by nmin Xia.
Molecular and Cellular Endocrinology | 2006
Paul M. Yen; Shinichiro Ando; Xu Feng; Ying Liu; Padma Maruvada; Xianmin Xia
Thyroid hormone (TH) plays important roles in metabolism, growth and differentiation. Thyroid hormone receptors (TRs) are ligand-regulatable transcription factors that bind both TH and DNA enhancer sequences in the promoter region of target genes where they can interact with co-repressor and co-activator complexes. These interactons, in turn, have consequent effects on transcription. This review describes studies on TH action from our laboratory examining the cellular localization and motility of TRs using green fluorescent fusion proteins, gene expression profiles of TH in WT and TRalpha and TRbeta KO mice, as well as general transcription factor and co-activator recruitment on the promoters of target genes by TH in chromatin immunoprecipitation assays.
Oncogene | 2002
Yuexing Zhang; Joseph D. Fondell; Qianben Wang; Xianmin Xia; Aiwu Cheng; Michael L Lu; Anne W. Hamburger
Members of the ErbB family of receptors have been implicated in regulation of androgen receptor (AR) activity. Ebp1, an ErbB-3 binding protein recently cloned in our laboratory, possesses an LXXLL motif important in mediating interactions with nuclear hormone receptors. Therefore, we sought to determine if Ebp1 could bind AR and influence AR transcriptional activation potential. We demonstrate in this study that Ebp1 bound to AR in vitro and in vivo, and that this binding was increased by androgen treatment. The C terminal 79 amino acids of Ebp1 were sufficient to bind AR. The N terminal domain of AR was responsible for binding Ebp1. Ligand-mediated transcriptional activation of both artificial and natural AR regulated promoters was inhibited by ectopic expression of ebp1 in transient transfection systems. Ebp1 deletion mutants that either lacked the C terminal AR binding region or had a mutated LXXLL motif failed to inhibit AR activated transcription. PSA expression from its endogenous promoter was also decreased in LNCaP prostate cancer cells overexpressing Ebp1. The growth of AR positive LNCaP cells was inhibited by ectopic expression of ebp1, but mutants that failed to repress transcription did not inhibit cell growth. These studies suggest that Ebp1 may play a role in the function of the AR and provide a link between ErbB receptors and the AR.
Molecular and Cellular Biology | 2003
Xianmin Xia; Aiwu Cheng; Damilola Akinmade; Anne W. Hamburger
ABSTRACT Although phosphoinositide 3-kinase (PI 3-kinase) is essential for cell cycle progression, the molecular mechanisms that regulate its diverse biological effects are poorly understood. We demonstrate here that Rb, a key regulator of cell cycle progression, associates with p55 kDa (p55α and p55γ) regulatory subunits of PI 3-kinase in vivo and in vitro. Both confocal microscopy and biochemical analysis demonstrated the presence of p55γ in the nucleus. The 24-amino-acid N-terminal end of p55γ, which is unique among PI 3-kinase regulatory subunits, was sufficient to bind Rb. Addition of serum or growth factors to quiescent cells triggered the dissociation of Rb from p55. Ectopic expression of the 24-amino-acid N-terminal end of p55γ inhibited cell cycle progression, as evidenced by induction of cell growth arrest at the G0/G1 phase, inhibition of DNA synthesis, inhibition of cyclin D and cyclin E promoter activity, and changes in the expression of cell cycle-related proteins. The inhibitory effects of the N-terminal end of p55γ on cell cycle progression depended on the presence of functional Rb. These data demonstrate for the first time an association of p55γ with Rb and show that modification of this association can lead to cell cycle arrest.
Molecular Endocrinology | 2009
Dongqing Wang; Xianmin Xia; Ying Liu; Alexis Oetting; Robert L. Walker; Yuelin Zhu; Paul S. Meltzer; Philip A. Cole; Yun Bo Shi; Paul M. Yen
Currently, little is known about histone modifications and molecular mechanisms of negatively regulated transcription. In pituitary cells, thyroid hormone (T(3)) decreased transcription, and surprisingly increased histone acetylation, of TSHalpha promoter. This increase was mediated directly by thyroid hormone receptor. Histone acetylation of H3K9 and H3K18 sites, two modifications usually associated with transcriptional activation, occur in negative regulation of TSHalpha promoter. T(3) also caused release of a corepressor complex composed of histone deacetylase 3 (HDAC3), transducin beta-like protein 1, and nuclear receptor coprepressor (NCoR)/ silencing mediator for retinoic and thyroid hormone receptor from TSHalpha promoter in chromatin immunoprecipitation assays. NCoR and HDAC3 overexpression selectively increased ligand-independent basal transcription. Two histone acetyltransferase inhibitors increased overall transcription but did not abrogate negative regulation or NCoR/HDAC3 complex release by T(3). Chromatin immunoprecipitation analyses of an endogenous positively regulated target gene showed increased histone acetylation and corepressor complex release with T(3) treatment. Finally, microarray analyses suggested there is a subset of negatively regulated genes with increased histone acetylation. These findings demonstrate the critical role of NCoR/HDAC3 complex in negative regulation of TSHalpha gene expression and show that similar complexes and overlapping epigenetic modifications can participate in both negative and positive transcriptional regulation.
PLOS ONE | 2010
Dongqing Wang; Xianmin Xia; Roy E. Weiss; Samuel Refetoff; Paul M. Yen
Background Hormonally-regulated histone modifications that govern positive versus negative transcription of target genes are poorly characterized despite their importance for normal and pathological endocrine function. There have been only a few studies examining chromatin modifications on target gene promoters by nuclear hormone receptors. Moreover, these studies have focused on positively-regulated target genes. TSHα, a heterodimer partner for thyrotropin (TSH), is secreted by the pituitary gland. T3 negatively regulates TSHα gene expression via thyroid hormone receptors (TRs) which belong to the nuclear hormone receptor superfamily, whereas thyrotropin releasing hormone (TRH) positively regulates via the TRH receptor, a G protein-coupled receptor. Methodology/Principal Findings We studied regulation of the TSHα gene by cAMP and T3 using chromatin immunoprecipitation (ChIP) assays in stably-transfected rat pituitary cells containing the human TSHα promoter. Interestingly, cAMP selectively increased histone H4 acetylation whereas, as previously reported, T3 induced histone H3 acetylation. In particular, cAMP increased H4K5 and H4K8 acetylation and decreased H4K20 trimethylation, modifications associated with transcriptional activation. T3 increased H3K9 and H3K18 acetylation and H3K4 trimethylation; however, it also decreased H3K27 acetylation and increased H3K27 trimethylation which are associated with transcriptional repression. Of note, cAMP recruited pCREB, CBP/p300, and PCAF to the promoter whereas T3 caused dissociation of NCoR/SMRT and HDAC3. Overexpression of a dominant negative mutant thyroid hormone receptor (TR) from a patient with resistance to thyroid hormone (RTH) led to less T3-dependent negative regulation and partially blocked histone H3 modifications of the TSHα promoter. Conclusions/Significance Our findings show that non-overlapping and specific histone modifications determine positive versus negative transcriptional regulation, and integrate opposing hormonal and intracellular signals at the TSHα promoter. A mutant TR from a patient with RTH exerted dominant negative activity by blocking the histone modifications induced by T3 on the TSHα promoter and likely contributes to the inappropriate TSH production observed in RTH.
Molecular Cancer Therapeutics | 2008
Junbo Hu; Xianmin Xia; Aiwu Cheng; Guihua Wang; Xuelai Luo; Michael F. Reed; Tito Fojo; Alexis Oetting; Jianping Gong; Paul M. Yen
p55PIK, a regulatory subunit of phosphatidylinositol 3-kinase (PI3K), specifically interacts with retinoblastoma protein (Rb) through the unique NH2 terminus of p55PIK, N24. This interaction is critical for cell proliferation and cell cycle progression. To examine p55PIK as a potential target for cancer therapy, we generated an adenovirus expressing N24 (Ad-N24-GFP) and studied its effects on the proliferation of cultured cancer cells, including human colon (HT29) and thyroid (FTC236) cancer cells. Ad-N24-GFP blocked cell proliferation and induced cell cycle arrest in all cancer cell lines tested. N24 induced cell cycle arrest at G0-G1 phase in cell lines that expressed Rb. Interestingly, N24 inhibited cell proliferation by blocking cell cycle transition at both S and G2-M phases in FTC236 cells, which did not express Rb. When Rb was knocked down by short hairpin RNA in HT29 cells, N24 also inhibited cell cycle progression at S and G2-M phases, suggesting that p55PIK regulates cell cycle progression by Rb-dependent and Rb-independent mechanisms. Finally, Ad-N24-GFP markedly decreased the growth of xenograft tumors derived from HT29 and FTC236 cancer cells in athymic nude mice. Our data strongly suggest that N24 peptide is an effective anticancer therapy, which specifically inhibits PI3K signaling pathways mediated by p55PIK. Moreover, they show that the regulatory subunit of an enzyme, in addition to its catalytic subunit, can be an important target for drug development. [Mol Cancer Ther 2008;07(12):3719–28]
BMC Medical Genomics | 2012
Jin Zhou; Geng Bo Chen; Yew Chung Tang; Rohit A. Sinha; Yonghui Wu; Chui Sun Yap; Guihua Wang; Junbo Hu; Xianmin Xia; Patrick Tan; Liang Kee Goh; Paul M. Yen
BackgroundWhile there is strong evidence for phosphatidylinositol 3-kinase (PI3K) involvement in cancer development, there is limited information about the role of PI3K regulatory subunits. PIK3R3, the gene that encodes the PI3K regulatory subunit p55γ, is over-expressed in glioblastoma and ovarian cancers, but its expression in gastric cancer (GC) is not known. We thus used genetic and bioinformatic approaches to examine PIK3R3 expression and function in GC, the second leading cause of cancer mortality world-wide and highly prevalent among Asians.MethodsPrimary GC and matched non-neoplastic mucosa tissue specimens from a unique Asian patient gastric cancer library were comprehensively profiled with platforms that measured genome-wide mRNA expression, DNA copy number variation, and DNA methylation status. Function of PIK3R3 was predicted by IPA pathway analysis of co-regulated genes with PIK3R3, and further investigated by siRNA knockdown studies. Cell proliferation was estimated by crystal violet dye elution and BrdU incorporation assay. Cell cycle distribution was analysed by FACS.ResultsPIK3R3 was significantly up-regulated in GC specimens (n = 126, p < 0.05), and 9.5 to 15% tumors showed more than 2 fold increase compare to the paired mucosa tissues. IPA pathway analysis showed that PIK3R3 promoted cellular growth and proliferation. Knockdown of PIK3R3 decreased the growth of GC cells, induced G0/G1 cell cycle arrest, decreased retinoblastoma protein (Rb) phosphorylation, cyclin D1, and PCNA expression.ConclusionUsing a combination of genetic, bioinformatic, and molecular biological approaches, we showed that PIK3R3 was up-regulated in GC and promoted cell cycle progression and proliferation; and thus may be a potential new therapeutic target for GC.
Angiogenesis | 2013
Guihua Wang; Cheng Chen; Rui Yang; Xiaonian Cao; Senyan Lai; Xuelai Luo; Yongdong Feng; Xianmin Xia; Jianping Gong; Junbo Hu
Vascular growth factor (VEGF) is an important mediator of angiogenesis. PI3K plays essential roles in angiogenesis; however, the mechanisms and specific functions of individual isoforms of PI3K members in tumor angiogenesis regulation are still not fully understood. In this study, we evaluate the role of p55PIK, a PI3K regulatory subunit encoded by PIK3R3 gene, in tumor angiogenesis. We reported that overexpression of p55PIK in cancer cells up-regulated HIF-1α expression and increased VEGF expression. Furthermore, overexpression of p55PIK increased tumor angiogenesis in vivo and in vitro. Moreover, data indicated enhanced HIF-1α expression by p55PIK-PI3K depended on its ability to activate NF-кB signaling pathways, especially to increase the phosphorylation of p65 subunits of NF-κB. Our study suggested that p55PIK-PI3K was essential in regulating cancer cell-mediated angiogenesis and contributed to tumor growth and that the p55PIK provides a potential and specific target for new anti-angiogenesis drug development.
BioMed Research International | 2013
Yu Deng; Jing Wang; Guihua Wang; Yuan Jin; Xuelai Luo; Xianmin Xia; Jianping Gong; Junbo Hu
p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K), plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb) protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation) assay shows that MZF1 binds to the cis-element “TGGGGA” in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P = 0.046, P = 0.047, resp.). A strong positive correlation (Rs = 0.94) between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.
Cell Death & Differentiation | 2012
Gangduo Wang; Yu Deng; Xiaonian Cao; Senyan Lai; Y Tong; Xuelai Luo; Yongdong Feng; Xianmin Xia; Jianping Gong; Junbo Hu
p55PIK, a regulatory subunit of phosphatidylinositol 3-kinases, promotes cell cycle progression by interacting with cell cycle modulators such as retinoblastoma protein (Rb) via its unique amino-terminal 24 amino-acid residue (N24). Overexpression of N24 specifically inhibits these interactions and leads to cell cycle arrest. Herein, we describe the generation of a fusion protein (Tat transactivator protein (TAT)–N24) that contains the protein transduction domain and N24, and examined its effects on the proliferation and differentiation of leukemia cells. TAT–N24 not only blocks cell proliferation but remarkably induces differentiation of leukemia cells in vitro and in vivo. Systemically administered TAT–N24 also significantly decreases growth of leukemia cell tumors in animal models. Furthermore, overexpression of p55PIK in leukemia cells leads to increased proliferation; however, TAT–N24 blocks this effect and concomitantly induces differentiation. There is significant upregulation of p55PIK mRNA and protein expression in leukemia cells from patients. TAT–N24 inhibits cell cycle progression and induces differentiation of bone marrow cells derived from patients with several different types of leukemia. These results show that cell-permeable N24 peptide induces leukemia cell differentiation and suggest that p55PIK may be a novel drug target for the treatment of hematopoetic malignancies.