Xiantao Shen
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiantao Shen.
Macromolecules | 2011
Xiantao Shen; Lei Ye
A new interfacial nano and molecular imprinting approach is developed to prepare spherical molecularly imprinted polymers with well-controlled hierarchical structures. This method is based on Pickering emulsion polymerization using template-modified colloidal particles. The interfacial imprinting is carried out in particle-stabilized oil-in-water emulsions, where the molecular template is presented on the surface of silica nanoparticles during the polymerization of the monomer phase. After polymerization, the template-modified silica nanoparticles are removed from the new spherical particles to leave tiny indentations decorated with molecularly imprinted sites. The imprinted microspheres prepared using the new interfacial nano and molecular imprinting have very interesting features: a well-controlled hierarchical structure composed of large pores decorated with easily accessible molecular binding sites, group selectivity toward a series of chemicals having a common structural moiety (epitopes), and a hydrophilic surface that enables the MIPs to be used under aqueous conditions.
Chemical Communications | 2012
Xiantao Shen; Lihua Zhu; Nan Wang; Lei Ye; Heqing Tang
Molecular imprinting technology allows synthesis of polymers with specific recognition ability towards target pollutants, which show potential to selectively remove Highly Toxic Organic Pollutants (HTOPs) in the presence of common organic matrices that are thousands of times more abundant than the targets. This feature article summarizes the current development of molecular imprinting for removing HTOPs from polluted water, with a special emphasis on the application of molecularly imprinted polymers to improve the efficiency of photocatalytic and biological degradation of HTOPs in wastewater.
Chemical Communications | 2012
Xiantao Shen; Tongchang Zhou; Lei Ye
A new strategy of molecular imprinting to prepare spherical hydrogels via water-in-oil Pickering emulsion polymerization was developed. The imprinted hydrogels exhibited fast adsorption kinetics and significant selectivity for the target protein.
Chemical Communications | 2011
Xiantao Shen; Lei Ye
Molecularly imprinted polymer microspheres were synthesized by Pickering emulsion polymerization. Fluorescence spectroscopic investigations provided insights into the template recognition in water.
Angewandte Chemie | 2014
Xiantao Shen; Johan Svensson Bonde; Tripta Kamra; Leif Bülow; Jack C. Leo; Dirk Linke; Lei Ye
The tendency of bacteria to assemble at oil-water interfaces can be utilized to create microbial recognition sites on the surface of polymer beads. In this work, two different groups of bacteria were first treated with acryloyl-functionalized chitosan and then used to stabilize an oil-in-water emulsion composed of cross-linking monomers that were dispersed in aqueous buffer. Polymerization of the oil phase followed by removal of the bacterial template resulted in well-defined polymer beads bearing bacterial imprints. Chemical passivation of chitosan and cell displacement assays indicate that the bacterial recognition on the polymer beads was dependent on the nature of the pre-polymer and the target bacteria. The functional materials for microbial recognition show great potential for constructing cell-cell communication networks, biosensors, and new platforms for testing antibiotic drugs.
ACS Applied Materials & Interfaces | 2013
Changgang Xu; Khan Mohammad Ahsan Uddin; Xiantao Shen; H. Surangi N. Jayawardena; Mingdi Yan; Lei Ye
Because of their synthetic accessibility, molecularly imprinted polymer (MIP) nanoparticles are ideal building blocks for preparing multifunctional composites. In this work, we developed a general photocoupling chemistry to enable simple conjugation of MIP nanoparticles with inorganic magnetic nanoparticles. We first synthesized MIP nanoparticles using propranolol as a model template and perfluorophenyl azide-modified silica-coated magnetic nanoparticles. Using a simple photoactivation followed by facile purification with a magnet, we obtained magnetic composite particles that showed selective uptake of propranolol. We characterized the nanoparticles and composite materials using FT-IR, TEM, fluorescence spectroscopy, and radioligand binding analysis. Through the high molecular selectivity of the magnetic composite, we demonstrated the nondestructive feature and the high efficiency of the photocoupling chemistry. The versatile photoconjugation method developed in this work should also be very useful for combining organic MIPs with other inorganic nanoparticles to enable new chemical sensors and high efficiency photocatalysts.
Chemical Communications | 2014
Chuixiu Huang; Xiantao Shen
By combining the specific molecular recognition capability of MIPs and the asymmetric structure of Janus particles, the Janus MIP particles which were synthesized via a wax-water Pickering emulsion showed attractive capabilities as self-propelled transporters for controlled drug delivery.
ACS Applied Materials & Interfaces | 2014
Chuixiu Huang; Tripta Kamra; Shilpi Chaudhary; Xiantao Shen
In this work, a simple breath figure method was proposed to directly fabricate large-area and ordered honeycomb structures on commercial PMMA substrates or PS Petri dishes without the use of an external polymer solution. The obtained honeycomb structure is indeed part of the substrate, providing the honeycomb layer with enough mechanical stability. The breath figure method in this work for the synthesis of honeycomb structure is extremely simple with scale-up capability to large-area production, which offers new insights into surface engineering with great potential in commercial technologies. For example, using the honeycomb-patterned Petri dishes prepared via this method, cells can be easily separated into divided aggregation, which favors understanding of naturally occurring networks in higher organisms and cell-cell and cell-matrix interactions, and the therapeutic control of genetic circuits.
Soft Matter | 2012
Xiantao Shen; Changgang Xu; Lei Ye
Journal of Materials Chemistry | 2012
Changgang Xu; Xiantao Shen; Lei Ye