Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianyu Zhang is active.

Publication


Featured researches published by Xianyu Zhang.


Optics Express | 2011

First laboratory results with the LINC-NIRVANA high layer wavefront sensor

Xianyu Zhang; Wolfgang Gaessler; Albert R. Conrad; Thomas Bertram; Carmelo Arcidiacono; T. M. Herbst; Martin Kuerster; Peter Bizenberger; Daniel Meschke; Hans-Walter Rix; Changhui Rao; Lars Mohr; Florian Briegel; Frank Kittmann; Juergen Berwein; Jan Trowitzsch; Laura Schreiber; Roberto Ragazzoni; Emiliano Diolaiti

In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV.


Proceedings of SPIE | 2012

LINC-NIRVANA Pathfinder: testing the next generation of wave front sensors at LBT

Albert R. Conrad; Carmelo Arcidiacono; Harald Baumeister; Maria Bergomi; Thomas Bertram; Juergen Berwein; Chris Biddick; Peter Bizenberger; Matthieu Brangier; Florian Briegel; A. Brunelli; Joar Brynnel; Lorenzo Busoni; Norm Cushing; Fulvio De Bonis; Michele D. De La Peña; Simone Esposito; Jacopo Farinato; Luca Fini; Richard F. Green; T. M. Herbst; Ralph Hofferbert; Frank Kittmann; Martin Kuerster; W. Laun; Daniel Meschke; Lars Mohr; Aleksei Pavlov; Jörg-Uwe Pott; Alfio Puglisi

LINC-NIRVANA will employ four wave front sensors to realize multi-conjugate correction on both arms of a Fizeau interferometer for LBT. Of these, one of the two ground-layer wave front sensors, together with its infrared test camera, comprise a stand-alone test platform for LINC-NIRVANA. Pathfinder is a testbed for full LINC-NIRVANA intended to identify potential interface problems early in the game, thus reducing both technical, and schedule, risk. Pathfinder will combine light from multiple guide stars, with a pyramid sensor dedicated to each star, to achieve ground-layer AO correction via an adaptive secondary: the 672-actuator thin shell at the LBT. The ability to achieve sky coverage by optically coadding light from multiple stars has been previously demonstrated; and the ability to achieve correction with an adaptive secondary has also been previously demonstrated. Pathfinder will be the first system at LBT to combine both of these capabilities. Since reporting our progress at A04ELT2, we have advanced the project in three key areas: definition of specific goals for Pathfinder tests at LBT, more detail in the software design and planning, and calibration. We report on our progress and future plans in these three areas, and on the project overall.


Optics Express | 2012

Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor

Xianyu Zhang; Carmelo Arcidiacono; Albert R. Conrad; T. M. Herbst; Wolfgang Gaessler; Thomas Bertram; Roberto Ragazzoni; Laura Schreiber; Emiliano Diolaiti; Martin Kuerster; Peter Bizenberger; Daniel Meschke; Hans-Walter Rix; Changhui Rao; Lars Mohr; Florian Briegel; Frank Kittmann; Juergen Berwein; Jan Trowitzsch

LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.


Proceedings of SPIE | 2010

An atmospheric turbulence generator for dynamic tests with LINC-NIRVANA's adaptive optics system

Daniel Meschke; Peter Bizenberger; Wolfgang Gaessler; Xianyu Zhang; Lars Mohr; Harald Baumeister; Emiliano Diolaiti

LINC-NIRVANA[1] (LN) is an instrument for the Large Binocular Telescope[2] (LBT). Its purpose is to combine the light coming from the two primary mirrors in a Fizeau-type interferometer. In order to compensate turbulence-induced dynamic aberrations, the layer oriented adaptive optics system of LN[3] consists of two major subsystems for each side: the Ground-Layer-Wavefront sensor (GLWS) and the Mid- and High-Layer Wavefront sensor (MHLWS). The MHLWS is currently set up in a laboratory at the Max-Planck-Institute for Astronomy in Heidelberg. To test the multi-conjugate AO with multiple simulated stars in the laboratory and to develop the necessary control software, a dedicated light source is needed. For this reason, we designed an optical system, operating in visible as well as in infrared light, which imitates the telescopes optical train (f-ratio, pupil position and size, field curvature). By inserting rotating surface etched glass phase screens, artificial aberrations corresponding to the atmospheric turbulence are introduced. In addition, different turbulence altitudes can be simulated depending on the position of these screens along the optical axis. In this way, it is possible to comprehensively test the complete system, including electronics and software, in the laboratory before integration into the final LINC-NIRVANA setup. Combined with an atmospheric piston simulator, also this effect can be taken into account. Since we are building two identical sets, it is possible to feed the complete instrument with light for the interferometric combination during the assembly phase in the integration laboratory.


Optical Engineering | 2013

LINC-NIRVANA for the large binocular telescope: setting up the world’s largest near infrared binoculars for astronomy

Ralph Hofferbert; Harald Baumeister; Thomas Bertram; Jürgen Berwein; Peter Bizenberger; A. Böhm; Michael C. Böhm; J. Borelli; Matthieu Brangier; Florian Briegel; Albert R. Conrad; Fulvio De Bonis; Roman Follert; T. M. Herbst; Armin Huber; Frank Kittmann; M. Kürster; W. Laun; Ulrich Mall; Daniel Meschke; Lars Mohr; Vianak Naranjo; Aleksei Pavlov; Jörg-Uwe Pott; Hans-Walter Rix; Ralf-Rainer Rohloff; E. Schinnerer; Clemens Storz; Jan Trowitzsch; Zhaojun Yan

LINC-NIRVANA (LN) is the near-infrared, Fizeau-type imaging interferometer for the large binocular telescope (LBT) on Mt. Graham, Arizona (elevation of 3267 m). The instrument is currently being built by a consortium of German and Italian institutes under the leadership of the Max Planck Institute for Astronomy in Heidelberg, Germany. It will combine the radiation from both 8.4 m primary mirrors of LBT in such a way that the sensitivity of a 11.9 m telescope and the spatial resolution of a 22.8 m telescope will be obtained within a 10.5×10.5 arcsec 2 scientific field of view. Interferometric fringes of the combined beams are tracked in an oval field with diameters of 1 and 1.5 arcmin. In addition, both incoming beams are individually corrected by LN’s multiconjugate adaptive optics system to reduce atmospheric image distortion over a circular field of up to 6 arcmin in diameter. A comprehensive technical overview of the instrument is presented, comprising the detailed design of LN’s four major systems for interferometric imaging and fringe tracking, both in the near infrared range of 1 to 2.4 μm, as well as atmospheric turbulence correction at two altitudes, both in the visible range of 0.6 to 0.9 μm. The resulting performance capabilities and a short outlook of some of the major science goals will be presented. In addition, the roadmap for the related assembly, integration, and verification process are discussed. To avoid late interface-related risks, strategies for early hardware as well as software interactions with the telescope have been elaborated. The goal is to ship LN to the LBT in 2014.


6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes | 2012

LINC-NIRVANA: cryogenic optics for diffraction limited beam combination

Peter Bizenberger; Harald Baumeister; T. M. Herbst; Xianyu Zhang

LINC-NIRVANA is an interferometric imaging camera, which combines the two 8.4 m telescopes of the Large Binocular Telescope (LBT). The instrument operates in the wavelength range from 1.1 μm to 2.4 μm, covering the J, H and K-band, respectively. The beam combining camera (NIRCS) offers the possibility to achieve diffraction limited images with the special resolution of a 23 m telescope. The optics are designed to deliver a 10 arcsec × 10 arcsec field of view with 5 mas resolution. In this paper we describe the evolution of the cryogenic optics, from design and manufacturing to verification. Including the argumentation for decisions we made in order to present a sort of guideline for large cryo-optics. We also present the alignment and testing strategies at a detailed level.


Proceedings of SPIE | 2016

Adaptive optics operations at the Large Binocular Telescope Observatory

Douglas L. Miller; Gregory Taylor; Julian C. Christou; Xianyu Zhang; Guido Brusa Zappellini; Gustavo Rahmer; Michael Lefebvre; Alfio Puglisi; Enrico Pinna; Simone Esposito

The goal for the adaptive optics systems at the Large Binocular Telescope Observatory (LBTO) is for them to operate fully automatically, without the need for an AO Scientist, and to be run by the observers and/or the telescope operator. This has been built into their design. Initially, the AO systems would close the loop using optimal parameters based on the observing conditions and guide star brightness, without adapting to changing conditions. We present the current status of AO operations as well as recent updates that improve the operational efficiency and minimize downtime. Onsky efficiency and performance will also be presented, along with calibrations required for AO closed loop operation.


Proceedings of SPIE | 2012

Pupil rotation compensation for LINC-NIRVANA

Matthieu Brangier; Albert R. Conrad; Thomas Bertram; Xianyu Zhang; Juergen Berwein; Florian Briegel; T. M. Herbst; Roberto Ragazzoni

The interferometric imager LINC-NIRVANA will use pyramid wavefront-sensors for multi-conjugated adaptive optics (MCAO). A derotator will produce a static field on the pyramids, but a rotating pupil image on the CCD. For long exposure times, we have to take into account this effect to command the deformable mirror properly by changing the command matrix on the fly. We reproduce in a laboratory set-up this configuration to test different methods for compensating for this effect. We present the results obtained and the optimal solution we have selected.


6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment | 2012

Measurement of non-common path static aberrations in an interferometric camera by phase diversity

Zhaojun Yan; T. M. Herbst; Pengqian Yang; Peter Bizenberger; Xianyu Zhang; Albert R. Conrad; Thomas Bertram; Martin Kuerster; Hans-Walter Rix; Xinyang Li; Changhui Rao

LINC-NIRVANA (LN) is a near-infrared image-plane beam combiner with advanced, multi-conjugated adaptive optics for the Large Binocular Telescope. Non-common path aberrations (NCPAs) between the near-infrared science camera and the wave-front sensor (WFS) are unseen by the WFS and therefore are not corrected in closed loop. This would prevent LN from achieving its ultimate performance. We use a modified phase diversity technique to measure the internal optical static aberrations and hence the NCPAs. Phase diversity is a methodology for estimating wave-front aberrations by solving an unconstrained optimization problem from multiple images whose pupil phases differ from one another by a known amount. We conduct computer simulations of the reconstruction of aberrations of an optical system with the phase diversity method. In the reconstruction, we fit the wave-front to Zernike polynomials to reduce the number of variables. The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm is very well suited to phase diversity (PD) due to its good performance in solving large scale optimization problems. The main constraint for the implementation of PD for LN is that we cannot add extra components to the internal interferometric camera imaging system to obtain infocus and defocus images. In this paper, we introduce a new method, namely shifting the focal plane source, not the detector, to overcome this constraint. Some experiments were done to test and verify this method and the results are presented and discussed. The study shows that the method is very flexible and the paper gives practical guidelines for the application of phase diversity methods to characterize adaptive optics systems.


Adaptive Optics Systems VI | 2018

Adaptive optics systems at the Large Binocular Telescope: status, upgrades, and improvements

Guido Brusa Zappellini; Gregory Taylor; Douglas L. Miller; C. Veillet; Julian C. Christou; Xianyu Zhang; Al Conrad; John M. Hill; Gustavo Rahmer

The Large Binocular Telescope has two adaptive secondary mirrors (ASMs). Each of these feed four focal stations, three of which are equipped with wavefront sensors (WFS) to provide the signal for adaptive optics (AO) correction. These are (1) FLAO - the on-axis natural guide star system feeding the two LUCI NIR imagers/spectrographs, (2) ARGOS - the ground-layer adaptive optics laser-guide star system, which shares the same port as FLAO, (3) LBTI - the 2-11 micron Fizeau/Nulling interferometer, and (4) Linc-Nirvana - the MCAO system. In this paper, we report on the current status of the AO facilities, FLAO, ARGOS, and the ASMs as well as the (1) detector and performance upgrades to FLAO and LBTI wavefront sensors, i.e. the SOUL project, and (2) improvements to the ASMs’ electronics. We also present improvements to the FLAO operation and checkout procedures.

Collaboration


Dive into the Xianyu Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge