Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianzhong Meng is active.

Publication


Featured researches published by Xianzhong Meng.


Circulation Research | 1995

Preconditioning of Isolated Rat Heart Is Mediated by Protein Kinase C

Max B. Mitchell; Xianzhong Meng; Lihua Ao; James M. Brown; Alden H. Harken; Anirban Banerjee

Catecholamines have been implicated in the phenomenon of ischemic preconditioning. We have previously demonstrated that ischemic preconditioning against postischemic mechanical dysfunction in the isolated rat heart is mediated by the alpha 1-adrenergic receptor. The purpose of this study was to delineate the signal transduction of preconditioning distal to the alpha 1-adrenergic receptor. Our results suggest that (1) transient ischemia and alpha 1-adrenergic receptor-induced preconditioning is inhibited by protein kinase C (PKC) antagonists, (2) functional protection against global ischemia/reperfusion injury can be induced by infusion of diacylglycerol, the second messenger of the alpha 1-adrenergic pathway, and (3) transient ischemia and alpha 1-adrenergic preconditioning are both characterized by similar translocation of PKC-delta to the sarcolemma of myocardium. These findings suggest that PKC is an effector of preconditioning in the isolated rat heart.


Critical Care Medicine | 1999

Tumor necrosis factor-alpha and interleukin-1 beta synergistically depress human myocardial function

Brian S. Cain; Daniel R. Meldrum; Charles A. Dinarello; Xianzhong Meng; Kyung S. Joo; Anirban Banerjee; Alden H. Harken

OBJECTIVE Proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta have been implicated in the pathogenesis of myocardial dysfunction in ischemia-reperfusion injury, sepsis, chronic heart failure, viral myocarditis, and cardiac allograft rejection. Although circulating TNF-alpha and IL-1beta are both often elevated in septic shock, it remains unknown whether TNF-alpha or IL-1beta are the factors induced during sepsis that directly depress human myocardial function, and if so, whether the combination synergistically depresses myocardial function. Furthermore, the mechanism(s) by which these cytokines induce human myocardial depression remain unknown. We hypothesized the following: a) TNF-alpha and IL-1beta directly depress human myocardial function; b) together, TNF-alpha and IL-1beta act synergistically to depress human myocardial function; and c) inhibition of ceramidase or nitric oxide synthase attenuates myocardial depression induced by TNF-alpha or IL-1beta by limiting proximal cytokine signaling or production of myocardial nitric oxide (NO). DESIGN Prospective, randomized, controlled study. SETTING Experimental laboratory in a university hospital. SUBJECTS Freshly obtained human myocardial trabeculae. INTERVENTIONS Human atrial trabeculae were obtained at the time of cardiac surgery, suspended in organ baths, and field simulated at 1 Hz, and the developed force was recorded. After a 90-min equilibration, TNF-alpha (1.25, 12.5, 125, or 250 pg/mL for 20 mins), IL-1beta (6.25, 12.5, 50, or 200 pg/mL for 20 mins), or TNF-alpha (1.25 pg/mL) plus IL-1beta (6.25 pg/mL) were added to the bath, and function was measured for the subsequent 100 mins after the 20-min exposure. To assess the roles of the sphingomyelin and NO pathways in TNF-alpha and IL-1beta cross-signaling, the ceramidase inhibitor N-oleoyl ethanolamine (1 microM) or the NO synthase inhibitor N(G)-monomethyl-L-arginine (10 microM) was added before TNF-alpha (125 pg/mL) or IL-1beta (50 pg/mL). MEASUREMENTS AND MAIN RESULTS TNF-alpha and IL-1beta each depressed human myocardial function in a dose-dependent fashion (maximally depressing to 16.2 + 1.9% baseline developed force for TNF-alpha and 25.7 + 6.3% baseline developed force for IL-1beta), affecting systolic relatively more than diastolic performance (each p < .05). However, when combined, TNF-alpha and IL-1beta at concentrations that did not individually result in depression (p > .05 vs. control) resulted in contractile depression (p < .05 vs. control). Inhibition of myocardial sphingosine or NO release abolished the myocardial depressive effects of either TNF-alpha or IL-1beta. CONCLUSIONS TNF-alpha and IL-1beta separately and synergistically depress human myocardial function. Sphingosine likely participates in the TNF-alpha and IL-1beta signal leading to human myocardial functional depression. Therapeutic strategies to reduce production or signaling of either TNF-alpha or IL-1beta may limit myocardial dysfunction in sepsis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999

Early kidney TNF-α expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion

Kirstan K. Donnahoo; Xianzhong Meng; Alfred Ayala; Mark P. Cain; Alden H. Harken; Daniel R. Meldrum

The purpose of this study was to determine whether isolated renal ischemia and reperfusion (I/R) induces renal tumor necrosis factor (TNF) mRNA production, TNF protein expression, or TNF bioactivity and, if so, whether local/early TNF production acts as mediator of ischemia-induced, neutrophil-mediated renal injury. After rats were anesthetized, varying periods of renal ischemia, with or without reperfusion, were induced. Kidney mRNA content (RT-PCR), TNF protein expression (ELISA), TNF bioactivity (WEHI-164 cell clone cytotoxicity assay), and neutrophil infiltration [myeloperoxidase (MPO) assay] were determined. In other animals, renal MPO and serum creatinine were assessed after TNF was neutralized [binding protein (TNF-BP)]. Thirty minutes of ischemia induced renal TNF mRNA. TNF protein expression and bioactivity peaked after 1 h ischemia and 2 h reperfusion, whereas neutrophil infiltration peaked at 4 h reperfusion. TNF-BP neutralized TNF bioactivity, reduced neutrophil infiltration, and protected postischemic function. These results constitute the initial demonstration that 1) early renal tissue TNF expression contributes to neutrophil infiltration and injury after I/R and 2) TNF-BP may offer a new adjunctive therapy in renal preservation prior to planned ischemic insults.The purpose of this study was to determine whether isolated renal ischemia and reperfusion (I/R) induces renal tumor necrosis factor (TNF) mRNA production, TNF protein expression, or TNF bioactivity and, if so, whether local/early TNF production acts as mediator of ischemia-induced, neutrophil-mediated renal injury. After rats were anesthetized, varying periods of renal ischemia, with or without reperfusion, were induced. Kidney mRNA content (RT-PCR), TNF protein expression (ELISA), TNF bioactivity (WEHI-164 cell clone cytotoxicity assay), and neutrophil infiltration [myeloperoxidase (MPO) assay] were determined. In other animals, renal MPO and serum creatinine were assessed after TNF was neutralized [binding protein (TNF-BP)]. Thirty minutes of ischemia induced renal TNF mRNA. TNF protein expression and bioactivity peaked after 1 h ischemia and 2 h reperfusion, whereas neutrophil infiltration peaked at 4 h reperfusion. TNF-BP neutralized TNF bioactivity, reduced neutrophil infiltration, and protected postischemic function. These results constitute the initial demonstration that 1) early renal tissue TNF expression contributes to neutrophil infiltration and injury after I/R and 2) TNF-BP may offer a new adjunctive therapy in renal preservation prior to planned ischemic insults.


PLOS Medicine | 2006

Mycobacterium tuberculosis Induces Interleukin-32 Production through a Caspase- 1/IL-18/Interferon-γ-Dependent Mechanism

Mihai G. Netea; Tania Azam; Eli C. Lewis; Leo A. B. Joosten; Maorong Wang; Dennis M. L. Langenberg; Xianzhong Meng; Edward D. Chan; Do-Young Yoon; Tom H. M. Ottenhoff; Soo-Hyun Kim; Charles A. Dinarello

Background Interleukin (IL)–32 is a newly described proinflammatory cytokine that seems likely to play a role in inflammation and host defense. Little is known about the regulation of IL-32 production by primary cells of the immune system. Methods and Findings In the present study, freshly obtained human peripheral blood mononuclear cells were stimulated with different Toll-like receptor (TLR) agonists, and gene expression and synthesis of IL-32 was determined. We demonstrate that the TLR4 agonist lipopolysaccharide induces moderate (4-fold) production of IL-32, whereas agonists of TLR2, TLR3, TLR5, or TLR9, each of which strongly induced tumor necrosis factor α and IL-6, did not stimulate IL-32 production. However, the greatest amount of IL-32 was induced by the mycobacteria Mycobacterium tuberculosis and M. bovis BCG (20-fold over unstimulated cells). IL-32-induced synthesis by either lipopolysaccharide or mycobacteria remains entirely cell-associated in monocytes; moreover, steady-state mRNA levels are present in unstimulated monocytes without translation into IL-32 protein, similar to other cytokines lacking a signal peptide. IL-32 production induced by M. tuberculosis is dependent on endogenous interferon-γ (IFNγ); endogenous IFNγ is, in turn, dependent on M. tuberculosis–induced IL-18 via caspase-1. Conclusions In conclusion, IL-32 is a cell-associated proinflammatory cytokine, which is specifically stimulated by mycobacteria through a caspase-1- and IL-18-dependent production of IFNγ.


Blood | 2009

Plasma from stored packed red blood cells and MHC class I antibodies causes acute lung injury in a 2-event in vivo rat model

Marguerite R. Kelher; Tomhiko Masuno; Ernest E. Moore; Sagar S. Damle; Xianzhong Meng; Yong Song; Xiayuan Liang; Jerry R Niedzinski; Steven S. Geier; Samina Y. Khan; Fabia Gamboni-Robertson; Christopher C. Silliman

Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion death. We hypothesize that TRALI requires 2 events: (1) the clinical condition of the patient and (2) the infusion of antibodies against MHC class I antigens or the plasma from stored blood. A 2-event rat model was developed with saline (NS) or endotoxin (LPS) as the first event and the infusion of plasma from packed red blood cells (PRBCs) or antibodies (OX18 and OX27) against MHC class I antigens as the second event. ALI was determined by Evans blue dye leak from the plasma to the bronchoalveolar lavage fluid (BALF), protein and CINC-1 concentrations in the BALF, and the lung histology. NS-treated rats did not evidence ALI with any second events, and LPS did not cause ALI. LPS-treated animals demonstrated ALI in response to plasma from stored PRBCs, both prestorage leukoreduced and unmodified, and to OX18 and OX27, all in a concentration-dependent fashion. ALI was neutrophil (PMN) dependent, and OX18/OX27 localized to the PMN surface in vivo and primed the oxidase of rat PMNs. We conclude that TRALI is the result of 2 events with the second events consisting of the plasma from stored blood and antibodies that prime PMNs.


The Annals of Thoracic Surgery | 1998

Increased Myocardial Tumor Necrosis Factor-α in a Crystalloid-Perfused Model of Cardiac Ischemia-Reperfusion Injury

Daniel R. Meldrum; Joseph C. Cleveland; Brian S. Cain; Xianzhong Meng; Alden H. Harken

BACKGROUND The heart is a tumor necrosis factor-alpha (TNF-alpha)-producing organ. Recent basic experimental and clinical evidence suggests that TNF-alpha is an important mediator of myocardial injury during acute myocardial infarction, chronic heart failure, cardiac allograft rejection, and cardiopulmonary bypass operations. Although it is known that the myocardium itself is capable of producing TNF-alpha in response to endotoxin, it is unknown whether there is an increase in myocardial tissue TNF-alpha levels after ischemia-reperfusion injury. We hypothesized that ischemia-reperfusion induces the production of TNF-alpha by the heart. METHODS To avoid blood-borne TNF-alpha as a potentially confounding variable, we examined myocardial TNF-alpha production in a crystalloid-perfused model of cardiac ischemia-reperfusion injury. Isolated rat hearts were perfused with crystalloid solution and subjected to ischemia-reperfusion. Postischemic myocardial TNF-alpha was measured using an enzyme-linked immunosorbent assay and correlated with developed pressure, coronary flow, end-diastolic pressure, and creatine kinase loss (assay of activity in coronary effluent). RESULTS Ischemia-reperfusion induced a marked increase in myocardial TNF-alpha that was associated with decreased myocardial contractility and coronary flow and with increased end-diastolic pressure and postischemic creatine kinase loss. CONCLUSIONS The heart produces TNF-alpha in response to ischemia-reperfusion. Ischemia-induced TNF-alpha production may contribute to postischemic myocardial stunning, necrosis, or both. Strategies designed to limit ischemia-induced myocardial TNF-alpha production may have therapeutic utility in the settings of planned myocardial ischemic events.


Journal of the American College of Cardiology | 1998

Human SERCA2a levels correlate inversely with age in senescent human myocardium

Brian S. Cain; Daniel R. Meldrum; Kyung S. Joo; Ju-Feng Wang; Xianzhong Meng; Joseph C. Cleveland; Anirban Banerjee; Alden H. Harken

OBJECTIVES This study sought to characterize functional impairment after simulated ischemia-reperfusion (I/R) or Ca2+ bolus in senescent human myocardium and to determine if age-related alterations in myocardial concentrations of SERCA2a, phospholamban, or calsequestrin participate in senescent myocardial dysfunction. BACKGROUND Candidates for elective cardiac interventions are aging, and an association between age and impairment of relaxation has been reported in experimental animals. Function of the sarcoplasmic reticulum resulting in diastolic dysfunction could be dysregulated at the level of cytosolic Ca2+ uptake by SERCA2a, its inhibitory subunit (phospholamban), or at the level of Ca2+ binding by calsequestrin. METHODS Human atrial trabeculae from 17 patients (45-75 years old) were suspended in organ baths, field simulated at 1 Hz, and force development was recorded during I/R (45/120 min). Trabeculae from an additional 12 patients (53-73 years old) were exposed to Ca2+ bolus (2-3 mmol/L bath concentration). Maximum +/- dF/dt and the time constant of force decay (tau) were measured before and after I/R or Ca2+ bolus and related to age. SERCA2a, phospholamban, and calsequestrin from 12 patients (39-77 years old) were assessed by immunoblot. RESULTS Functional results indicated that maximum +/-dF/dt and tau were prolonged in senescent (>60 years) human myocardium after I/R (p < 0.05). Calcium bolus increased the maximum +/-dF/dt and decreased tau in younger, but not older patients (p < 0.05). SERCA2a and the ratio of SERCA2a to either phospholamban or calsequestrin were decreased in senescent human myocardium (p < 0.05). CONCLUSIONS Senescent human myocardium exhibits decreased myocardial SERCA2a content with age, which may, in part, explain impaired myocardial function after either I/R or Ca2+ exposure.


Surgery | 1998

Hydrogen peroxide induces tumor necrosis factor α–mediated cardiac injury by a P38 mitogen-activated protein kinase–dependent mechanism

Daniel R. Meldrum; Charles A. Dinarello; Joseph C. Cleveland; Brian S. Cain; Brian D. Shames; Xianzhong Meng; Alden H. Harken

BACKGROUND Oxidant stress caused by ischemia or endotoxemia induces myocardial dysfunction and cardiomyocyte death; however, mechanisms responsible remain unknown. We hypothesized that hydrogen peroxide (H2O2) induces myocardial dysfunction and cardiomyocyte death via P38 mitogen-activated protein kinase (MAPK)-mediated myocardial tumor necrosis factor (TNF) production. METHODS Langendorff perfused rat hearts (6/group) were subjected to oxidant stress (H2O2 infusion; 300 mmol/L x 80 minutes), with and without prior infusion of a specific P38 kinase MAPK inhibitor (P38i = 1 mmol/L/min x 5 minutes) or TNF neutralization (20 mg TNF binding protein (BP)/min x 80 minutes). Developed pressure (DP), coronary flow, and end-diastolic pressure were continuously recorded. Myocardial creatine kinase (CK) loss was measured in the coronary effluent, and tissue TNF was measured in myocardial homogenates. RESULTS Eighty minutes of H2O2 infusion induced a 6.5-fold increase in myocardial TNF production, which was associated with a 70% decrease in DP and increase in CK loss. P38 MAPK inhibition or TNF-BP decreased myocardial TNF production, cardiomyocyte death, and myocardial dysfunction. CONCLUSIONS These results demonstrate that H2O2 alone induces myocardial TNF production. P38 MPAK is an oxidant-sensitive enzyme that mediates oxidant-induced myocardial TNF production, cardiac dysfunction, and cardiomyocyte death.


Journal of the American College of Cardiology | 2009

Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2.

Xiaoping Yang; David A. Fullerton; Xin Su; Lihua Ao; Joseph C. Cleveland; Xianzhong Meng

OBJECTIVES Our aim was to determine whether aortic valve interstitial cells (AVICs) and pulmonary valve interstitial cells (PVICs) differ in expression of Toll-like receptor (TLR)2 and TLR4, response to TLR agonists, and osteogenic phenotypic changes. BACKGROUND Calcific stenosis occurs frequently in aortic valves but rarely in pulmonary valves. Studies have implicated AVICs in the inflammation associated with calcification and progression to stenosis. We previously reported that human AVICs express functional TLR2 and TLR4 and that stimulation of these receptors induces pro-osteogenic factor expression. METHODS Human aortic and pulmonary valve leaflets from the same heart were collected and interstitial cells isolated. RESULTS Aortic valves express more TLR2 and TLR4, in both tissue and isolated interstitial cells, than pulmonary valves. After stimulation with TLR2 and TLR4 agonists, AVICs express higher levels of pro-inflammatory and pro-osteogenic mediators (bone morphogenetic protein [BMP]-2, runt-related transcription factor 2) and greater osteogenic phenotypic changes (alkaline phosphatase [ALP] activity, calcified nodule formation) than PVICs. Silencing TLR2 and TLR4 in AVICs reduced BMP-2 expression and ALP activity to PVIC levels. ALP activity in AVICs induced by TLR2 and TLR4 agonists was abolished by BMP antagonism with Noggin and mimicked by stimulation with recombinant BMP-2. AVICs isolated from stenotic valves had greater expression of TLR2 and TLR4 and a greater BMP-2 response than AVICs from normal valves. CONCLUSIONS Greater expression of TLR2 and TLR4 and greater pro-inflammatory and pro-osteogenic responses to TLR2 and TLR4 agonists in AVICs than PVICs are associated with osteogenic phenotypic changes. These innate immune receptors may play a critical role in aortic valve calcification and stenosis.


Circulation Research | 2003

Liposomal Delivery of Heat Shock Protein 72 Into Renal Tubular Cells Blocks Nuclear Factor-κB Activation, Tumor Necrosis Factor-α Production, and Subsequent Ischemia-Induced Apoptosis

Arthur L. Burnett; Xianzhong Meng; Rosalia Misseri; Matthew B.K. Shaw; John P. Gearhart; Daniel R. Meldrum

Abstract— Heat shock protein 72 (HSP72) is a stress-inducible protein capable of protecting a variety of cells from toxins, thermal stress, and ischemic injury. The cytoprotective role and mechanism of action of HSP72 in renal cell ischemic injury remain unclear. To study this, HSP72 was introduced (liposomal transfer) or induced (thermal stress, 43°C×1 hour) in renal tubular cells (LLC-PK1) with Western blot confirmation. Cells were subjected to simulated ischemia 24 hours after liposomal HSP72 transfer or thermal stress, and the effect of HSP72 on nuclear factor-&kgr;B (NF-&kgr;B) activation (electrophoretic mobility shift assay and immunohistochemistry), I&kgr;B&agr; production (Western blot), postischemic tumor necrosis factor-&agr; (TNF-&agr;) production (RT-PCR), and apoptosis (TUNEL assay) were determined. In separate experiments, the role of TNF-&agr; in apoptosis was determined (anti-TNF-&agr; neutralizing antibody). Results demonstrated that both liposomal transfer of HSP72 and thermal induction of HSP72 prevented NF-&kgr;B activation and translocation, TNF-&agr; gene transcription, and subsequent ischemia-induced renal tubular cell apoptosis. Furthermore, TNF-&agr; neutralization also inhibited ischemia-induced renal tubular cell apoptosis. These results indicate that liposomal delivery of HSP72 inhibits ischemia-induced renal tubular cell apoptosis by preventing NF-&kgr;B activation and subsequent TNF-&agr; production. Further elucidation of the mechanisms of HSP-induced cytoprotection may result in therapeutic strategies that limit or prevent ischemia-induced renal damage.

Collaboration


Dive into the Xianzhong Meng's collaboration.

Top Co-Authors

Avatar

David A. Fullerton

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Lihua Ao

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph C. Cleveland

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Anirban Banerjee

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian D. Shames

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Rui Song

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Yong Song

Anschutz Medical Campus

View shared research outputs
Researchain Logo
Decentralizing Knowledge