Xianzhu Wu
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xianzhu Wu.
Journal of Immunology | 2010
Xianzhu Wu; Nagaraj M. Gowda; Sanjeev Kumar; D. Channe Gowda
Dendritic cells (DCs) play a crucial role in the development of protective immunity to malaria. However, it remains unclear how malaria parasites trigger immune responses in DCs. In this study, we purified merozoites, food vacuoles, and parasite membrane fragments released during the Plasmodium falciparum schizont burst to homogeneity and tested for the activation of bone marrow-derived DCs from wild-type and TLR2−/−, TLR4−/−, TLR9−/−, and MyD88−/− C57BL/6J mice. The results demonstrate that a protein–DNA complex is the exclusive parasite component that activates DCs by a TLR9-dependent pathway to produce inflammatory cytokines. Complex formation with proteins is essential for the entry of parasite DNA into DCs for TLR9 recognition and, thus, proteins convert inactive DNA into a potent immunostimulatory molecule. Exogenous cationic polymers, polylysine and chitosan, can impart stimulatory activity to parasite DNA, indicating that complex formation involves ionic interactions. Merozoites and DNA–protein complex could also induce inflammatory cytokine responses in human blood DCs. Hemozoin is neither a TLR9 ligand for DCs nor functions as a carrier of DNA into cells. Additionally, although TLR9 is critical for DCs to induce the production of IFN-γ by NK cells, this receptor is not required for NK cells to secret IFN-γ, and cell–cell contact among myeloid DCs, plasmacytoid DCs, and NK cells is required for IFN-γ production. Together, these results contribute substantially toward the understanding of malaria parasite-recognition mechanisms. More importantly, our finding that proteins and carbohydrate polymers are able to confer stimulatory activity to an otherwise inactive parasite DNA have important implications for the development of a vaccine against malaria.
Journal of Immunology | 2004
Karin Roelofs-Haarhuis; Xianzhu Wu; Ernst Gleichmann
Previously, oral administration of nickel to C57BL/6 wild-type (WT) mice was shown to render both their splenic T cells and APCs (i.e., T cell-depleted spleen cells) capable of transferring nickel tolerance to naive syngeneic recipients. Moreover, sequential adoptive transfer experiments revealed that on transfer of tolerogenic APCs and immunization, the naive T cells of the recipients differentiated into regulatory T (Treg) cells. Here, we demonstrate that after oral nickel treatment Jα18−/− mice, which lack invariant NKT (iNKT) cells, were not tolerized and failed to generate Treg cells. However, transfer of APCs from those Jα18−/− mice did tolerize WT recipients. Hence, during oral nickel administration, tolerogenic APCs are generated that require iNKT cell help for the induction of Treg cells. To obtain this help, the tolerogenic APCs must address the iNKT cells in a CD1-restricted manner. When Jα18−/− mice were used as recipients of cells from orally tolerized WT donors, the WT Treg cells transferred the tolerance, whereas WT APCs failed to do so, although they proved tolerogenic on transfer to WT recipients. However, Jα18−/− recipients did become susceptible to the tolerogenicity of transferred WT APCs when they were reconstituted with IL-4- and IL-10-producing CD4+ iNKT cells. We conclude that CD4+ iNKT cells are required for the induction of oral nickel tolerance and, in particular, for the infectious spread of tolerance from APCs to T cells. Once induced, these Treg cells, however, can act independently of iNKT cells.
Journal of Immunology | 2001
Suzan Artik; Karin Haarhuis; Xianzhu Wu; Jutta Begerow; Ernst Gleichmann
We adapted our mouse model of allergic contact hypersensitivity to nickel for the study of tolerance. Sensitization in this model is achieved by the administration of nickel ions with H2O2; nickel ions alone are unable to prime naive T cells, but can restimulate primed ones. A 4-wk course of oral or i.p. administration of 10 mM NiCl2 to naive mice induced tolerance, preventing the induction of hypersensitivity for at least 20 wk; long term desensitization of nickel-sensitized mice, however, required continuous NiCl2 administration. When splenic T cells of orally tolerized donors, even after a treatment-free interval of 20 wk, were transferred to naive recipients, as with lymph node cells (LNC), they specifically prevented sensitization of the recipients. The LNC of such donors were anergic, because upon in vivo sensitization with NiCl2 in H2O2 and in vitro restimulation with NiCl2, they failed to show the enhanced proliferation and IL-2 production as seen with LNC of mice not tolerized before sensitization. As few as 102 bulk T cells, consisting of both CD4+ and CD8+ cells, were able to specifically transfer tolerance to nickel. A hypothesis is provided to account for this extraordinarily high frequency of nickel-reactive, suppressive T cells; it takes into account that nickel ions fail to act as classical haptens, but form versatile, unstable metal-protein and metal-peptide complexes. Furthermore, a powerful amplification mechanism, such as infectious tolerance, must operate which allows but a few donor T cells to tolerize the recipient.
Journal of Immunology | 2012
Nagaraj M. Gowda; Xianzhu Wu; D. Channe Gowda
Effective resolution of malaria infection by avoiding pathogenesis requires regulated pro- to anti-inflammatory responses and the development of protective immunity. TLRs are known to be critical for initiating innate immune responses, but their roles in the regulation of immune responses and development of protective immunity to malaria remain poorly understood. In this study, using wild-type, TLR2−/−, TLR4−/−, TLR9−/−, and MyD88−/− mice infected with Plasmodium yoelii, we show that TLR9 and MyD88 regulate pro/anti-inflammatory cytokines, Th1/Th2 development, and cellular and humoral responses. Dendritic cells from TLR9−/− and MyD88−/− mice produced significantly lower levels of proinflammatory cytokines and higher levels of anti-inflammatory cytokines than dendritic cells from wild-type mice. NK and CD8+ T cells from TLR9−/− and MyD88−/− mice showed markedly impaired cytotoxic activity. Furthermore, mice deficient in TLR9 and MyD88 showed higher Th2-type and lower Th1-type IgGs. Consequently, TLR9−/− and MyD88−/− mice exhibited compromised ability to control parasitemia and were susceptible to death. Our data also show that TLR9 and MyD88 distinctively regulate immune responses to malaria infection. TLR9−/− but not MyD88−/− mice produced significant levels of both pro- and anti-inflammatory cytokines, including IL-1β and IL-18, by other TLRs/inflammasome- and/or IL-1R/IL-18R–mediated signaling. Thus, whereas MyD88−/− mice completely lacked cell-mediated immunity, TLR9−/− mice showed low levels of cell-mediated immunity and were slightly more resistant to malaria infection than MyD88−/− mice. Overall, our findings demonstrate that TLR9 and MyD88 play central roles in the immune regulation and development of protective immunity to malaria, and have implications in understanding immune responses to other pathogens.
PLOS ONE | 2011
Nagaraj M. Gowda; Xianzhu Wu; D. Channe Gowda
The systemic clinical symptoms of Plasmodium falciparum infection such as fever and chills correspond to the proinflammatory cytokines produced in response to the parasite components released during the synchronized rupture of schizonts. We recently demonstrated that, among the schizont-released products, merozoites are the predominant components that activate dendritic cells (DCs) by TLR9-specific recognition to induce the maturation of cells and to produce proinflammatory cytokines. We also demonstrated that DNA is the active constituent and that formation of a DNA-protein complex is essential for the entry of parasite DNA into cells for recognition by TLR9. However, the nature of endogenous protein-DNA complex in the parasite is not known. In this study, we show that parasite nucleosome constitute the major protein-DNA complex involved in the activation of DCs by parasite nuclear material. The parasite components were fractionated into the nuclear and non-nuclear materials. The nuclear material was further fractionated into chromatin and the proteins loosely bound to chromatin. Polynucleosomes and oligonucleosomes were prepared from the chromatin. These were tested for their ability to activate DCs obtained by the FLT3 ligand differentiation of bone marrow cells from the wild type, and TLR2−/−, TLR9−/− and MyD88−/− mice. DCs stimulated with the nuclear material and polynucleosomes as well as mono- and oligonucleosomes efficiently induced the production of proinflammatory cytokines in a TLR9-dependent manner, demonstrating that nucleosomes (histone-DNA complex) represent the major TLR9-specific DC-immunostimulatory component of the malaria parasite nuclear material. Thus, our data provide a significant insight into the activation of DCs by malaria parasites and have important implications for malaria vaccine development.
Journal of Immunology | 2003
Karin Roelofs-Haarhuis; Xianzhu Wu; Michael Nowak; Min Fang; Suzan Artik; Ernst Gleichmann
Previously, we reported that tolerance to nickel, induced by oral administration of Ni2+ ions, can be adoptively transferred to naive mice with only 102 splenic T cells. Here we show that 102 T cell-depleted spleen cells (i.e., APCs) from orally tolerized donors can also transfer nickel tolerance. This cannot be explained by simple passive transfer of the tolerogen. The APCs from orally tolerized donors displayed a reduced allostimulatory capacity, a tolerogenic phenotype, and an increased expression of CD38 on B cells. In fact, it was B cells among the APCs that carried the thrust of tolerogenicity. Through serial adoptive transfers with Ly5.1+ donors and two successive sets of Ly5.2+ recipients, we demonstrated that nickel tolerance was infectiously spread from donor to host cells. After the transfer of either T cells or APCs from orally tolerized donors, the spread of tolerance to the opposite cell type of the recipients (i.e., APCs and T cells, respectively) required recipient immunization with NiCl2/H2O2. For the spread of tolerance from a given donor cell type, T cell or APC, to the homologous host cell type, the respective opposite cell type in the host was required as intermediate. We conclude that T suppressor cells and tolerogenic APCs induced by oral administration of nickel are part of a positive feedback loop that can enhance and maintain tolerance when activated by Ag associated with a danger signal. Under these conditions, APCs and T suppressor effector cells infectiously spread the tolerance to naive T cells and APCs, respectively.
Journal of Biological Chemistry | 2009
Jianzhong Zhu; Xianzhu Wu; Suchi Goel; Nagaraj M. Gowda; Sanjeev Kumar; Gowdahalli Krishnegowda; Gourav Mishra; Rebecca Weinberg; Guangfu Li; Matthias Gaestel; Tatsushi Muta; D. Channe Gowda
Proinflammatory responses induced by Plasmodium falciparum glycosylphosphatidylinositols (GPIs) are thought to be involved in malaria pathogenesis. In this study, we investigated the role of MAPK-activated protein kinase 2 (MK2) in the regulation of tumor necrosis factor-α (TNF-α) and interleukin (IL)-12, two of the major inflammatory cytokines produced by macrophages stimulated with GPIs. We show that MK2 differentially regulates the GPI-induced production of TNF-α and IL-12. Although TNF-α production was markedly decreased, IL-12 expression was increased by 2–3-fold in GPI-stimulated MK2−/− macrophages compared with wild type (WT) cells. MK2−/− macrophages produced markedly decreased levels of TNF-α than WT macrophages mainly because of lower mRNA stability and translation. In the case of IL-12, mRNA was substantially higher in MK2−/− macrophages than WT. This enhanced production is due to increased NF-κB binding to the gene promoter, a markedly lower level expression of the transcriptional repressor factor c-Maf, and a decreased binding of GAP-12 to the gene promoter in MK2−/− macrophages. Thus, our data demonstrate for the first time the role of MK2 in the transcriptional regulation of IL-12. Using the protein kinase inhibitors SB203580 and U0126, we also show that the ERK and p38 pathways regulate TNF-α and IL-12 production, and that both inhibitors can reduce phosphorylation of MK2 in response to GPIs and other toll-like receptor ligands. These results may have important implications for developing therapeutics for malaria and other infectious diseases.
Journal of Immunology | 2006
Michael Nowak; Frank Kopp; Karin Roelofs-Haarhuis; Xianzhu Wu; Ernst Gleichmann
Whereas oral nickel administration to C57BL/6 mice (Nihigh mice) renders the animals tolerant to immunization with NiCl2 combined with H2O2 as adjuvant, as determined by ear-swelling assay, it fails to tolerize Jα18−/− mice, which lack invariant NKT (iNKT) cells. Our previous work also showed that Nihigh splenic B cells can adoptively transfer the nickel tolerance to untreated (Nilow) recipients, but not to Jα18−/− recipients. In this study, we report that oral nickel administration increased the nickel content of splenic Nihigh B cells and up-regulated their Fas expression while down-regulating expression of bcl-2 and Bcl-xL, thus giving rise to an Ag-carrying, apoptosis-prone B cell phenotype. Although oral nickel up-regulated Fas expression on B cells of both wild-type Nihigh and Jα18−/− Nihigh mice, only the former showed a reduced number of total B cells in spleen when compared with untreated, syngeneic mice, indicating that iNKT cells are involved in B cell homeostasis by eliciting apoptosis of effete B cells. Upon transfer of Nihigh B cells, an infectious spread of nickel tolerance ensues, provided the recipients are immunized with NiCl2/H2O2. As a consequence of immunization, Fas ligand-positive (FasL+) iNKT cells appeared in the spleen and apparently elicited apoptosis of Nihigh B cells. The apoptotic Nihigh B cells were taken up by splenic dendritic cells, which thereby became tolerogenic for nickel-reactive Nilow T cells. In conclusion, FasL+ iNKT cells may act as ready-to-kill sentinels of innate immunity, but at the same time assist in tolerance induction by eliciting Fas/FasL-mediated apoptosis of effete, Ag-containing B cells.
PLOS ONE | 2013
Nagaraj M. Gowda; Xianzhu Wu; Sanjeev Kumar; Maria Febbraio; D. Channe Gowda
The scavenger receptor CD36 plays important roles in malaria, including the sequestration of parasite-infected erythrocytes in microvascular capillaries, control of parasitemia through phagocytic clearance by macrophages, and immunity. Although the role of CD36 in the parasite sequestration and clearance has been extensively studied, how and to what extent CD36 contributes to malaria immunity remains poorly understood. In this study, to determine the role of CD36 in malaria immunity, we assessed the internalization of CD36-adherent and CD36-nonadherent Plasmodium falciparum-infected red blood cells (IRBCs) and production of pro-inflammatory cytokines by DCs, and the ability of DCs to activate NK, and T cells. Human DCs treated with anti-CD36 antibody and CD36 deficient murine DCs internalized lower levels of CD36-adherent IRBCs and produced significantly decreased levels of pro-inflammatory cytokines compared to untreated human DCs and wild type mouse DCs, respectively. Consistent with these results, wild type murine DCs internalized lower levels of CD36-nonadherent IRBCs and produced decreased levels of pro-inflammatory cytokines than wild type DCs treated with CD36-adherent IRBCs. Further, the cytokine production by NK and T cells activated by IRBC-internalized DCs was significantly dependent on CD36. Thus, our results demonstrate that CD36 contributes significantly to the uptake of IRBCs and pro-inflammatory cytokine responses by DCs, and the ability of DCs to activate NK and T cells to produce IFN-γ. Given that DCs respond to malaria parasites very early during infection and influence development of immunity, and that CD36 contributes substantially to the cytokine production by DCs, NK and T cells, our results suggest that CD36 plays an important role in immunity to malaria. Furthermore, since the contribution of CD36 is particularly evident at low doses of infected erythrocytes, the results imply that the effect of CD36 on malaria immunity is imprinted early during infection when parasite load is low.
Parasite Immunology | 2012
Sanjeev Kumar; Nagaraj M. Gowda; Xianzhu Wu; Raghavendra Gowda; D. C. Gowda
Studies have shown that glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum activate macrophages mainly through Toll‐like receptor 2 (TLR2)‐mediated signalling and to certain extent through TLR4‐mediated signalling to induce proinflammatory cytokine production. However, the ability of parasite GPIs to activate dendritic cells (DCs) has not been reported. Here, we show that parasite GPIs efficiently activate DCs through TLR2‐mediated signalling mechanism and induce the production of TNF‐α and IL‐12. We also studied the role of scavenger receptor CD36 in P. falciparum GPI‐ and merozoite‐induced cytokine responses by DCs. The results indicate that CD36 modulates the cytokine‐inducing activity of the parasite GPIs by collaborating with TLR2 in DCs. Furthermore, our data reveal that CD36 modulates the activity of P. falciparum merozoites, likely by the contribution of phagocytosis‐coupled CD36‐mediated signalling to the signalling induced by merozoites. Altogether, these results contribute towards understanding of signalling mechanisms in malaria parasite‐induced activation of the innate immune system.