Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Fang Che is active.

Publication


Featured researches published by Xiao-Fang Che.


International Journal of Oncology | 2011

Combined treatment with bortezomib plus bafilomycin A1 enhances the cytocidal effect and induces endoplasmic reticulum stress in U266 myeloma cells: crosstalk among proteasome, autophagy-lysosome and ER stress.

Tomohiro Kawaguchi; Keisuke Miyazawa; Shota Moriya; Tadashi Ohtomo; Xiao-Fang Che; Munekazu Naito; Masahiro Itoh; Akio Tomoda

Bortezomib (BZ), a first line 26S proteasome inhibitor, induces a potent cytocidal effect with caspase-3 activation in multiple myeloma (MM) cell lines. Since IκBα is a substrate of the proteasome, the initial rationale for using BZ in MM has been to inhibit NF-κB. However, BZ rather activated NF-κB activity in U266 cells. BZ induces autophagy as well as endoplasmic reticulum (ER) stress in various cell lines tested. Inhibition of initial autophagosome formation by treatment with either 3-methyladenine or siRNA for LC3B in U266 cells and knockdown of the atg5 gene in a murine embryonic fibroblastic cell line all resulted in attenuation of BZ-induced cell death. In contrast, combined treatment with BZ and bafilomycin A1 (BAF), which is a specific inhibitor of vacuolar-ATPase and is used as an autophagy inhibitor at the late stage, resulted in synergistic cytotoxicity, compared with that by either BZ or BAF alone. BAF treatment also induced ER stress, but the kinetics of inductions of ER stress-related genes [e.g. CHOP (GADD153) and GRP78] completely differed between BZ- and BAF-treatments: BZ induced these ER stress markers within 8 h, whereas treatment with BAF required more than 48 h in U266 cells. In order to synchronize ER stress, we pre-treated U266 cells with BAF for 48 h, followed with BZ for 48 h. The sequential treatment with BAF and BZ induced a further enhanced cytotoxicity, compared with the simultaneous combination of BAF and BZ. These data suggest crosstalk among the ubiquitin-proteasome system, the autophagy-lysosome system, and ER stress. Controlling these interactions and kinetics appears to have important implications for optimizing clinical cancer treatment including MM-therapy.


International Journal of Oncology | 2013

Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells

Shota Moriya; Xiao-Fang Che; Seiichiro Komatsu; Akihisa Abe; Tomohiro Kawaguchi; Akihiko Gotoh; Masato Inazu; Akio Tomoda; Keisuke Miyazawa

The specific 26S proteasome inhibitor bortezomib (BZ) potently induces autophagy, endoplasmic reticulum (ER) stress and apoptosis in multiple myeloma (MM) cell lines (U266, IM-9 and RPMI8226). The macrolide antibiotics including concanamycin A, erythromycin (EM), clarithromycin (CAM) and azithromycin (AZM) all blocked autophagy flux, as assessed by intracellular accumulation of LC3B-II and p62. Combined treatment of BZ and CAM or AZM enhanced cytotoxicity in MM cell lines, although treatment with either CAM or AZM alone exhibited almost no cytotoxicity. This combination also substantially enhanced aggresome formation, intracellular ubiquitinated proteins and induced the proapoptotic transcription factor CHOP (CADD153). Expression levels of the proapoptotic genes transcriptionally regulated by CHOP (BIM, BAX, DR5 and TRB3) were all enhanced by combined treatment with BZ plus CAM, compared with treatment with each reagent alone. Like the MM cell lines, the CHOP+/+ murine embryonic fibroblast (MEF) cell line exhibited enhanced cytotoxicity and upregulation of CHOP and its transcriptional targets with a combination of BZ and one of the macrolides. In contrast, CHOP−/− MEF cells exhibited resistance against BZ and almost completely canceled enhanced cytotoxicity with a combination of BZ and a macrolide. These data suggest that ER stress-mediated CHOP induction is involved in pronounced cytotoxicity. Simultaneously targeting two major intracellular protein degradation systems such as the ubiquitin-proteasome system by BZ and the autophagy-lysosome system by a macrolide antibiotic enhances ER stress-mediated apoptosis in MM cells. This result suggests the therapeutic possibility of using a macrolide antibiotic with a proteasome inhibitor for MM therapy.


Biochemical and Biophysical Research Communications | 2013

Combined treatment with SAHA, bortezomib, and clarithromycin for concomitant targeting of aggresome formation and intracellular proteolytic pathways enhances ER stress-mediated cell death in breast cancer cells.

Seiichiro Komatsu; Shota Moriya; Xiao-Fang Che; Tomohisa Yokoyama; Norio Kohno; Keisuke Miyazawa

The ubiquitin-proteasome pathway and the autophagy-lysosome pathway are two major intracellular protein degradation systems. We previously reported that clarithromycin (CAM) blocks autophagy flux, and that combined treatment with CAM and proteasome inhibitor bortezomib (BZ) enhances ER-stress-mediated apoptosis in breast cancer cells, whereas treatment with CAM alone results in almost no cytotoxicity. Since HDAC6 is involved in aggresome formation, which is recognized as a cytoprotective response serving to sequester misfolded proteins and facilitate their clearance by autophagy, we further investigated the combined effect of vorinostat (suberoylanilide hydroxamic acid (SAHA)), which has a potent inhibitory effect for HDAC6, with CAM and BZ in breast cancer cell lines. SAHA exhibited some cytotoxicity along with an increased acetylation level of α-tubulin, a substrate of HDAC6. Combined treatment of SAHA, CAM, and BZ potently enhanced the apoptosis-inducing effect compared with treatment using each reagent alone or a combination of two of the three. Expression levels of ER-stress-related genes, including the pro-apoptotic transcription factor CHOP (GADD153), were maximally induced by the simultaneous combination of three reagents. Like breast cancer cell lines, a wild-type murine embryonic fibroblast (MEF) cell line exhibited enhanced cytotoxicity and maximally up-regulated Chop after combined treatment with SAHA, CAM, and BZ; however, a Chop knockout MEF cell line almost completely canceled this enhanced effect. The specific HDAC6 inhibitor tubacin also exhibited a pronounced cytocidal effect with a combination of CAM plus BZ. These data suggest that simultaneous targeting of intracellular proteolytic pathways and HDAC6 enhances ER-stress-mediated apoptosis in breast cancer cells.


Oncology Reports | 2011

Rapid decrease of intracellular pH associated with inhibition of Na+/H+ exchanger precedes apoptotic events in the MNK45 and MNK74 gastric cancer cell lines treated with 2-aminophenoxazine-3-one

Hiroyuki Nagata; Xiao-Fang Che; Keisuke Miyazawa; Akio Tomoda; Masato Konishi; Hideyuki Ubukata; Takafumi Tabuchi

The effects of Phx-3 on changes in intracellular pH (pHi) in the MKN45 and MKN74 human gastric cancer cell lines were evaluated in order to determine the mechanism for the proapoptotic effects of 2-aminophenoxazine-3-one (Phx-3) on these cells. Phx-3 (100 μM) reduced pHi in MKN45 from 7.45 to 5.8, and in MKN74 from 7.5 to 6.2 within 1 min of engagement with these cells. Such a decrease of pHi was closely correlated with the dose of this phenoxazine and continued for 4 h. The activity of Na+/H+ exchanger isoform l (NHE1), which is involved in H+ extrusion from the cells, was dose-dependently suppressed by Phx-3 in these cells, and was greatly suppressed in the presence of 100 μM Phx-3. This result indicates that the decrease of pHi in MKN45 and MKN74 cells is closely associated with the inhibition of NHE1 in these cells. The morphology of these cells at 24 h after treatment with Phx-3 indicated shrinkage of the cells and condensation of the nuclear chromatin structure, which are characteristic of the apoptotic events in these gastric cancer cells. Cytotoxicity of Phx-3 against MKN45 and MKN74 cells was extensive because almost all MKN45 cells lost viability at 24 h in the presence of 20 μM Phx-3, and nearly 50% of the MKN74 cells lost viability in the presence of 50 μM Phx-3. These results suggest that rapid and extensive decrease of pHi in human gastric cancer MKN45 and MKN74 cells caused by Phx-3 might disturb intracellular homeostasis, leading to apoptotic and cytotoxic events in these cells. Phx-3 is a good candidate for therapeutics of gastric cancer that is intractable to conventional chemopreventive therapies.


Biochemical and Biophysical Research Communications | 2015

EGFR-independent autophagy induction with gefitinib and enhancement of its cytotoxic effect by targeting autophagy with clarithromycin in non-small cell lung cancer cells.

Shohei Sugita; Kentaro Ito; Yutaro Yamashiro; Shota Moriya; Xiao-Fang Che; Tomohisa Yokoyama; Masaki Hiramoto; Keisuke Miyazawa

Gefitinib (GEF), an inhibitor for EGFR tyrosine kinase, potently induces autophagy in non-small cell lung cancer (NSCLC) cell lines such as PC-9 cells expressing constitutively activated EGFR kinase by EGFR gene mutation as well as A549 and H226 cells with wild-type EGFR. Unexpectedly, GEF-induced autophagy was also observed in non-NSCLC cells such as murine embryonic fibroblasts (MEF) and leukemia cell lines K562 and HL-60 without EGFR expression. Knockout of EGFR gene in A549 cells by CRISPR/Cas9 system still exhibited autophagy induction after treatment with GEF, indicating that the autophagy induction by GEF is not mediated through inhibiting EGFR kinase activity. Combined treatment with GEF and clarithromycin (CAM), a macrolide antibiotic having the effect of inhibiting autophagy flux, enhances the cytotoxic effect in NSCLC cell lines, although treatment with CAM alone exhibits no cytotoxicity. GEF treatment induced up-regulation of endoplasmic reticulum (ER)-stress related genes such as CHOP/GADD153 and GRP78. Knockdown of CHOP in PC-9 cells and Chop-knockout MEF both exhibited less sensitivity to GEF than controls. Addition of CAM in culture medium resulted in further pronounced GEF-induced ER stress loading, while CAM alone exhibited no effect. These data suggest that GEF-induced autophagy functions as cytoprotective and indicates the potential therapeutic possibility of using CAM for GEF therapy. Furthermore, it is suggested that the intracellular signaling for autophagy initiation in response to GEF can be completely dissociated from EGFR, but unknown target molecule(s) of GEF for autophagy induction might exist.


Proceedings of the Japan Academy. Series B, Physical and biological sciences | 2011

2-Aminophenoxazine-3-one and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one cause cellular apoptosis by reducing higher intracellular pH in cancer cells.

Xiao-Fang Che; Chun-Lei Zheng; Shin-ichi Akiyama; Akio Tomoda

We examined intracellular pH (pHi) of ten cancer cell lines derived from different organs and two normal cell lines including human embryonic lung fibroblast cells (HEL) and human umbilical vein endothelial cells (HUVEC) in vitro, and found that pHi of most of these cancer cells was evidently higher (pH 7.5 to 7.7) than that of normal cells (7.32 and 7.44 for HEL and HUVEC, respectively) and that of primary leukemic cells and erythrocytes hitherto reported (≤7.2). Higher pHi in these cancer cells could be related to the Warburg effect in cancer cells with enhanced glycolytic metabolism. Since reversal of the Warburg effect may perturb intracellular homeostasis in cancer cells, we looked for compounds that cause extensive reduction of pHi, a major regulator of the glycolytic pathway and its associated metabolic pathway. We found that phenoxazine compounds, 2-aminophenoxazine-3-one (Phx-3) and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one (Phx-1) caused a rapid and drastic dose-dependent decrease of pHi in ten different cancer cells within 30 min, though the extent of the decrease of pHi was significantly larger for Phx-3 (ΔpHi = 0.6 pH units or more for 100 µM Phx-3) than for Phx-1 (ΔpHi = 0.1 pH units or more for 100 µM Phx-1). This rapid and drastic decrease of pHi in a variety of cancer cells caused by Phx-3 and Phx-1 possibly perturbed their intracellular homeostasis, and extensively affected the subsequent cell death, because these phenoxazines exerted dose-dependent proapoptotic and cytotoxic effects on these cells during 72 h incubation, confirming a causal relationship between ΔpHi and cytotoxic effects due to Phx-3 and Phx-1. Phx-3 and Phx-1 also reduced pHi of normal cells including HEL and HUVEC, although they exerted less proapoptotic and cytotoxic effects on these cells than on cancer cells. Drugs such as Phx-3 and Phx-1 that reduce pHi and thereby induce cellular apoptosis might serve as benevolent anticancer drugs.


International Journal of Oncology | 2015

Targeting the integrated networks of aggresome formation, proteasome, and autophagy potentiates ER stress-mediated cell death in multiple myeloma cells

Shota Moriya; Seiichiro Komatsu; Kaho Yamasaki; Yusuke Kawai; Hiroko Kokuba; Ayako Hirota; Xiao-Fang Che; Masato Inazu; Akihiko Gotoh; Masaki Hiramoto; Keisuke Miyazawa

The inhibitory effects of macrolide antibiotics including clarithromycin (CAM) on autophagy flux have been reported. Although a macrolide antibiotic exhibits no cytotoxicity, its combination with bortezomib (BZ), a proteasome inhibitor, for the simultaneous blocking of the ubiquitin (Ub)-proteasome and autophagy-lysosome pathways leads to enhanced multiple myeloma (MM) cell apoptosis induction via stress overloading of the endoplasmic reticulum (ER). As misfolded protein cargo is recruited by histone deacetylase 6 (HDAC6) to dynein motors for aggresome transport, serving to sequester misfolded proteins, we further investigated the cellular effects of targeting proteolytic pathways and aggresome formation concomitantly in MM cells. Pronounced apoptosis was induced by the combination of vorinostat [suberoylanilide hydroxamic acid (SAHA); potently inhibits HDAC6] with CAM and BZ compared with each reagent or a 2-reagent combination. CAM/BZ treatment induced vimentin positive-aggresome formation along with the accumulation of autolysosomes in the perinuclear region, whereas they were inhibited in the presence of SAHA. The SAHA/CAM/BZ combination treatment maximally upregulated genes related to ER stress including C/EBP homologous protein (CHOP). Similarly to MM cell lines, enhanced cytotoxicity with CHOP upregulation following SAHA/CAM/BZ treatment was shown by a wild-type murine embryonic fibroblast (MEF) cell line; however, a CHOP-deficient MEF cell line almost completely canceled this pronounced cytotoxicity. Knockdown of HDAC6 with siRNA exhibited further enhanced CAM/BZ-induced cytotoxicity and CHOP induction along with the cancellation of aggresome formation. Targeting the integrated networks of aggresome, proteasome, and autophagy is suggested to induce efficient ER stress-mediated apoptosis in MM cells.


International Journal of Oncology | 2016

Macrolides sensitize EGFR-TKI-induced non-apoptotic cell death via blocking autophagy flux in pancreatic cancer cell lines.

Shuntaro Mukai; Shota Moriya; Masaki Hiramoto; Hiromi Kazama; Hiroko Kokuba; Xiao-Fang Che; Tomohisa Yokoyama; Satoshi Sakamoto; Akihiro Sugawara; Toshiaki Sunazuka; Satoshi Ōmura; Hiroshi Handa; Takao Itoi; Keisuke Miyazawa

Pancreatic cancer is one of the most difficult types of cancer to treat because of its high mortality rate due to chemotherapy resistance. We previously reported that combined treatment with gefitinib (GEF) and clarithromycin (CAM) results in enhanced cytotoxicity of GEF along with endoplasmic reticulum (ER) stress loading in non-small cell lung cancer cell lines. An epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) such as GEF induces autophagy in a pro-survival role, whereas CAM inhibits autophagy flux in various cell lines. Pronounced GEF-induced cytotoxicity therefore appears to depend on the efficacy of autophagy inhibition. In the present study, we compared the effect on autophagy inhibition among such macrolides as CAM, azithromycin (AZM), and EM900, a novel 12-membered non-antibiotic macrolide. We then assessed the enhanced GEF-induced cytotoxic effect on pancreatic cancer cell lines BxPC-3 and PANC-1. Autophagy flux analysis indicated that AZM is the most effective autophagy inhibitor of the three macrolides. CAM exhibits an inhibitory effect but less than AZM and EM900. Notably, the enhancing effect of GEF-induced cytotoxicity by combining macrolides correlated well with their efficient autophagy inhibition. However, this pronounced cytotoxicity was not due to upregulation of apoptosis induction, but was at least partially mediated through necroptosis. Our data suggest the possibility of using macrolides as ‘chemosensitizers’ for EGFR-TKI therapy in pancreatic cancer patients to enhance non-apoptotic tumor cell death induction.


International Journal of Oncology | 2013

2-Aminophenoxazine-3-one-induced apoptosis via generation of reactive oxygen species followed by c-jun N-terminal kinase activation in the human glioblastoma cell line LN229

Xiao-Fang Che; Shota Moriya; Chun-Lei Zheng; Akihisa Abe; Akio Tomoda; Keisuke Miyazawa

2-Aminophenoxazine-3-one (Phx-3) induces apoptosis in several types of cancer cell lines. However, the mechanism of apoptosis induction by Phx-3 has not been fully elucidated. In this study, we investigated the anticancer effects of Phx-3 in the glioblastoma cell line LN229 and analyzed its molecular mechanism. The results indicated that 6- and 20-h treatment with Phx-3 significantly induced apoptosis in LN229 cells, with downregulation of survivin and XIAP. Both ERK and JNK, which are the members of the MAPK family, were activated after treatment with Phx-3. Inhibition of ERK using the specific inhibitor U0126 blocked the Phx-3-induced apoptosis only in part. However, inhibition of JNK using the specific inhibitor SP600125 completely prevented Phx-3-induced apoptosis and restored the phosphorylation states of ERK to the control levels. Enhanced generation of reactive oxygen species (ROS) was detected after 3-h treatment with Phx-3. In addition, the ROS scavenger melatonin almost completely blocked Phx-3-induced JNK activation and apoptosis. This suggests that JNK activation was mediated by Phx-3-induced ROS generation. Although SP600125 and melatonin completely blocked the reduction of mitochondrial membrane potential after a 3-h treatment with Phx-3, extension of Phx-3 exposure time to 20 h resulted in no cancelation of mitochondrial depolarization by these reagents. These reagents also had little effect on the decreased expression of survivin and XIAP during a 3-20-h exposure to Phx-3. These results indicate that the production of ROS following JNK activation is the main axis of Phx-3-induced apoptosis in LN229 cells for short-term exposure to Phx-3, whereas alternative mechanism(s) appear to be involved in apoptosis induction during long-term exposure to Phx-3.


International Journal of Oncology | 2010

2-Aminophenoxazine-3-one induces cellular apoptosis by causing rapid intracellular acidification and generating reactive oxygen species in human lung adenocarcinoma cells.

Chun-Lei Zheng; Xiao-Fang Che; Shin-ichi Akiyama; Keisuke Miyazawa; Akio Tomoda

Collaboration


Dive into the Xiao-Fang Che's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akio Tomoda

Tokyo Medical University

View shared research outputs
Top Co-Authors

Avatar

Shota Moriya

Tokyo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge