Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao Hu Zhang is active.

Publication


Featured researches published by Xiao Hu Zhang.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility

Wen Ming Xu; Qi Xian Shi; Wen Ying Chen; Chen Xi Zhou; Ya Ni; Dewi Kenneth Rowlands; Guo Yi Liu; Hu Zhu; Ze Gang Ma; X.F. Wang; Zhang Hui Chen; Si Chang Zhou; Hong Shan Dong; Xiao Hu Zhang; Yiu Wa Chung; Yu Ying Yuan; Wan Xi Yang; Hsiao Chang Chan

Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel, mutations of which cause cystic fibrosis, a disease characterized by defective Cl− and HCO3− transport. Although >95% of all CF male patients are infertile because of congenital bilateral absence of the vas deferens (CBAVD), the question whether CFTR mutations are involved in other forms of male infertility is under intense debates. Here we report that CFTR is detected in both human and mouse sperm. CFTR inhibitor or antibody significantly reduces the sperm capacitation, and the associated HCO3−-dependent events, including increases in intracellular pH, cAMP production and membrane hyperpolarization. The fertilizing capacity of the sperm obtained from heterozygous CFTR mutant mice is also significantly lower compared with that of the wild-type. These results suggest that CFTR in sperm may be involved in the transport of HCO3− important for sperm capacitation and that CFTR mutations with impaired CFTR function may lead to reduced sperm fertilizing capacity and male infertility other than CBAVD.


The Journal of Physiology | 2009

The cystic fibrosis transmembrane conductance regulator in reproductive health and disease

Hsiao Chang Chan; Ye Chun Ruan; Qiong He; Min Hui Chen; Hui Chen; Wen Ming Xu; Wen Ying Chen; Chen Xie; Xiao Hu Zhang; Zhen Zhou

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel regulated by cAMP‐dependent phosphorylation, which is expressed in epithelial cells of a wide variety of tissues including the reproductive tracts. Mutations in the gene encoding CFTR cause cystic fibrosis, a common genetic disease in Caucasian populations with a multitude of clinical manifestations including infertility/subfertility in both sexes. However, the physiological role of CFTR in reproduction and its involvement in the pathogenesis of reproductive diseases remain largely unknown. This review discusses the role of CFTR in regulating fluid volume and bicarbonate secretion in the reproductive tracts and their importance in various reproductive events. We also discuss the contribution of CFTR dysfunction to a number of pathological conditions. The evidence presented is consistent with an important role of CFTR in reproductive health and disease, suggesting that CFTR might be a potential target for the diagnosis and treatment of reproductive diseases including infertility.


Nature Medicine | 2012

Activation of the epithelial Na + channel triggers prostaglandin E 2 release and production required for embryo implantation

Ye Chun Ruan; Jing Hui Guo; Xin-Mei Liu; Run-Ju Zhang; Lai Ling Tsang; Jian Da Dong; Hui Chen; Mei Kuen Yu; Xiaohua Jiang; Xiao Hu Zhang; Kin Lam Fok; Yiu Wa Chung; He-Feng Huang; Wen Liang Zhou; Hsiao Chang Chan

Embryo implantation remains a poorly understood process. We demonstrate here that activation of the epithelial Na+ channel (ENaC) in mouse endometrial epithelial cells by an embryo-released serine protease, trypsin, triggers Ca2+ influx that leads to prostaglandin E2 (PGE2) release, phosphorylation of the transcription factor CREB and upregulation of cyclooxygenase 2, the enzyme required for prostaglandin production and implantation. We detected maximum ENaC activation, as indicated by ENaC cleavage, at the time of implantation in mice. Blocking or knocking down uterine ENaC in mice resulted in implantation failure. Furthermore, we found that uterine ENaC expression before in vitro fertilization (IVF) treatment is markedly lower in women with implantation failure as compared to those with successful pregnancy. These results indicate a previously undefined role of ENaC in regulating the PGE2 production and release required for embryo implantation, defects that may be a cause of miscarriage and low success rates in IVF.


Nature Communications | 2014

Glucose-induced electrical activities and insulin secretion in pancreatic islet β-cells are modulated by CFTR

Jing Hui Guo; Hui Chen; Ye Chun Ruan; Xue Lian Zhang; Xiao Hu Zhang; Kin Lam Fok; Lai Ling Tsang; Mei Kuen Yu; Wen Qing Huang; Xiao Sun; Yiu Wa Chung; Xiaohua Jiang; Yoshiro Sohma; Hsiao Chang Chan

The cause of insulin insufficiency remains unknown in many diabetic cases. Up to 50% adult patients with cystic fibrosis (CF), a disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), develop CF-related diabetes (CFRD) with most patients exhibiting insulin insufficiency. Here we show that CFTR is a regulator of glucose-dependent electrical acitivities and insulin secretion in β-cells. We demonstrate that glucose elicited whole-cell currents, membrane depolarization, electrical bursts or action potentials, Ca2+ oscillations and insulin secretion are abolished or reduced by inhibitors or knockdown of CFTR in primary mouse β-cells or RINm5F β-cell line, or significantly attenuated in CFTR mutant (DF508) mice compared with wild-type mice. VX-809, a newly discovered corrector of DF508 mutation, successfully rescues the defects in DF508 β-cells. Our results reveal a role of CFTR in glucose-induced electrical activities and insulin secretion in β-cells, shed light on the pathogenesis of CFRD and possibly other idiopathic diabetes, and present a potential treatment strategy.


Oncogene | 2013

CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer

Chen Xie; Xiaohua Jiang; Junqiang Zhang; Ting Ting Sun; Jianda Dong; Andrew James Sanders; Ruiying Diao; Yu Wang; Kin Lam Fok; L.L. Tsang; Mei Kuen Yu; Xiao Hu Zhang; Yiu Wa Chung; Lin Ye; M. Y. Zhao; Jing Hui Guo; Z. J. Xiao; Hui Y. Lan; Chuen-Pei Ng; K. M. Lau; Zhiming Cai; Wen Guo Jiang; Hsiao Chang Chan

Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is expressed in the epithelial cells of a wide range of organs/tissues from which most cancers are derived. Although accumulating reports have indicated the association of cancer incidence with genetic variations in CFTR gene, the exact role of CFTR in cancer development and the possible underlying mechanism have not been elucidated. Here, we report that CFTR expression is significantly decreased in both prostate cancer cell lines and human prostate cancer tissue samples. Overexpression of CFTR in prostate cancer cell lines suppresses tumor progression (cell growth, adhesion and migration), whereas knockdown of CFTR leads to enhanced malignancies both in vitro and in vivo. In addition, we demonstrate that CFTR knockdown-enhanced cell proliferation, cell invasion and migration are significantly reversed by antibodies against either urokinase plasminogen activator (uPA) or uPA receptor (uPAR), which are known to be involved in various malignant traits of cancer development. More interestingly, overexpression of CFTR suppresses uPA by upregulating the recently described tumor suppressor microRNA-193b (miR-193b), and overexpression of pre-miR-193b significantly reverses CFTR knockdown-enhanced malignant phenotype and abrogates elevated uPA activity in prostate cancer cell line. Finally, we show that CFTR gene transfer results in significant tumor repression in prostate cancer xenografts in vivo. Taken together, the present study has demonstrated a previously undefined tumor-suppressing role of CFTR and its involvement in regulation of miR-193b in prostate cancer development.


PLOS ONE | 2011

Defective CFTR-dependent CREB activation results in impaired spermatogenesis and azoospermia.

Wen Ming Xu; Jing Chen; Hui Chen; Rui Ying Diao; Kin Lam Fok; Jian Da Dong; Ting Ting Sun; Wen Ying Chen; Mei Kuen Yu; Xiao Hu Zhang; Lai Ling Tsang; Ann Lau; Qi Xian Shi; Qinghua Shi; Pingbo Huang; Hsiao Chang Chan

Cystic fibrosis (CF) is the most common life-limiting recessive genetic disease among Caucasians caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) with over 95% male patients infertile. However, whether CFTR mutations could affect spermatogenesis and result in azoospermia remains an open question. Here we report compromised spermatogenesis, with significantly reduced testicular weight and sperm count, and decreased cAMP-responsive element binding protein (CREB) expression in the testes of CFTR knockout mice. The involvement of CFTR in HCO3 − transport and the expression of the HCO3 − sensor, soluble adenylyl cyclase (sAC), are demonstrated for the first time in the primary culture of rat Sertoli cells. Inhibition of CFTR or depletion of HCO3 − could reduce FSH-stimulated, sAC-dependent cAMP production and phosphorylation of CREB, the key transcription factor in spermatogenesis. Decreased CFTR and CREB expression are also observed in human testes with azoospermia. The present study reveals a previously undefined role of CFTR and sAC in regulating the cAMP-CREB signaling pathway in Sertoli cells, defect of which may result in impaired spermatogenesis and azoospermia. Altered CFTR-sAC-cAMP-CREB functional loop may also underline the pathogenesis of various CF-related diseases.


Human Reproduction | 2012

Cryptorchidism-induced CFTR down-regulation results in disruption of testicular tight junctions through up-regulation of NF-κB/COX-2/PGE2

Jing Chen; Kin Lam Fok; Hui Chen; Xiao Hu Zhang; Wen Ming Xu; Hsiao Chang Chan

STUDY QUESTION Does elevated temperature-induced cystic fibrosis transmembrane conductance regulator (CFTR) down-regulation in Sertoli cells in cryptorchid testis disrupt testicular tight junctions (TJs) through the nuclear factor kappa B (NF-κB)/cyclooxygenase-2 (COX-2)/prostaglandin E(2) (PGE(2)) pathway? SUMMARY ANSWER Our results suggest that CFTR may be involved in regulating testicular TJs and the blood-testis barrier (BTB) through its negative regulation of the NF-κB/COX-2/PGE(2) pathway in Sertoli cells, a defect of which may result in the spermatogenesis defect in cryptorchidism. WHAT IS KNOWN ALREADY Cryptorchidism, or undescended testes, is known to result in defective spermatogenesis. Although an elevated testicular temperature is regarded as an important factor affecting spermatogenesis in cryptorchidism, the exact mechanism remains elusive. It is known that the expression of functional CFTR is temperature sensitive. Our previous study has demonstrated that CFTR negatively regulates NF-κB/COX-2/PGE(2) in bronchial epithelial cells. Disruption of TJs by COX-2/PGE(2) has been found in tumour cells. STUDY DESIGN AND METHODS Expression of CFTR, NF-κB, COX-2 and TJ proteins was examined in the testes of a surgical-induced cryptorchidism mouse model and a testicular hyperthermia mouse model, as well as in control or CFTR-inhibited/knocked down primary rat Sertoli cells. PGE(2) production was measured by ELISA. Sertoli cell barrier function was determined by transepethelial resistance (TER) measurements in rat Sertoli cell primary cultures. BTB integrity in the cryptorchidism model was monitored by examining tracker dye injected into seminiferous tubules. MAIN RESULTS Down-regulation of CFTR accompanied by activation of NF-κB, up-regulation of COX-2 and down-regulation of TJ proteins, including ZO-1 and occludin, was observed in a cryptorchidism mouse model. BTB leakage revealed impaired BTB integrity in cryptorchid testes, confirming the destruction of TJs. The inverse correlation of CFTR and COX-2 was further confirmed in a mouse testis hyperthermia model and CFTR knockout mouse model. Culturing primary Sertoli cells at 37°C, which mimics the pathological condition of cryptorchidism, led to a significant decrease in CFTR and increase in COX-2 expression and PGE(2) production compared with the culture at the physiological 32°C. Inhibition or knockdown of CFTR led to increased COX-2 but decreased ZO-1 and occludin expression in Sertoli cells, which could be mimicked by PGE(2), but reversed by NF-κB or COX-2 inhibitor, suggesting that the regulation of TJs by CFTR is mediated by a NF-κB/COX-2/PGE(2) pathway. Inhibition of CFTR or administration of PGE(2) significantly decreased Sertoli cell TER. LIMITATIONS This study has tested only the CFTR/NF-κB/COX-2/PGE(2) pathway in mouse testes in vivo and in rat Sertoli cells in vitro, and thus, it has some limitations. Further investigations in other species, especially humans, are needed. WIDER IMPLICATIONS OF THE FINDINGS Our study may shed more light on one of the aspects of the complicated underlying mechanisms of defective spermatogenesis induced by cryptorchidism.


Biochimica et Biophysica Acta | 2013

Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer

Jie Ting Zhang; Xiaohua Jiang; Chen Xie; Hong Cheng; Jian Da Dong; Yan Wang; Kin Lam Fok; Xiao Hu Zhang; Ting Ting Sun; Lai Ling Tsang; Hao Chen; Xiao Juan Sun; Yiu Wa Chung; Zhi Ming Cai; Wen Guo Jiang; Hsiao Chang Chan

The epithelial-to-mesenchymal transition (EMT), a process involving the breakdown of cell-cell junctions and loss of epithelial polarity, is closely related to cancer development and metastatic progression. While the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) and HCO3(-) conducting anion channel expressed in a wide variety of epithelial cells, has been implicated in the regulation of epithelial polarity, the exact role of CFTR in the pathogenesis of cancer and its possible involvement in EMT process have not been elucidated. Here we report that interfering with CFTR function either by its specific inhibitor or lentiviral miRNA-mediated knockdown mimics TGF-β1-induced EMT and enhances cell migration and invasion in MCF-7. Ectopic overexpression of CFTR in a highly metastatic MDA-231 breast cancer cell line downregulates EMT markers and suppresses cell invasion and migration in vitro, as well as metastasis in vivo. The EMT-suppressing effect of CFTR is found to be associated with its ability to inhibit NFκB targeting urokinase-type plasminogen activator (uPA), known to be involved in the regulation of EMT. More importantly, CFTR expression is found significantly downregulated in primary human breast cancer samples, and is closely associated with poor prognosis in different cohorts of breast cancer patients. Taken together, the present study has demonstrated a previously undefined role of CFTR as an EMT suppressor and its potential as a prognostic indicator in breast cancer.


The Journal of Clinical Endocrinology and Metabolism | 2012

Impaired CFTR-Dependent Amplification of FSH-Stimulated Estrogen Production in Cystic Fibrosis and PCOS

Hui Chen; Jing Hui Guo; Yong Chao Lu; Guo Lian Ding; Mei Kuen Yu; Lai Ling Tsang; Kin Lam Fok; Xin Mei Liu; Xiao Hu Zhang; Yiu Wa Chung; Pingbo Huang; He-Feng Huang; Hsiao Chang Chan

CONTEXT Estrogens play important roles in a wide range of physiological and pathological processes, and their biosynthesis is profoundly influenced by FSH that regulates the rate-limiting enzyme aromatase-converting estrogens from androgens. Abnormal estrogen levels are often seen in diseases such as ovarian disorders in polycystic ovarian syndrome (PCOS), an endocrine disorder affecting 5-10% of women of reproductive age, and cystic fibrosis (CF), a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR). OBJECTIVES We undertook the present study to investigate the mechanism underlying these ovarian disorders, which is not well understood. RESULTS FSH-stimulated cAMP-responsive element binding protein phosphorylation, aromatase expression, and estradiol production are found to be enhanced by HCO3- and a HCO3- sensor, the soluble adenylyl cyclase, which could be significantly reduced by CFTR inhibition or in ovaries or granulosa cells of cftr knockout/ΔF508 mutant mice. CFTR expression is found positively correlated with aromatase expression in human granulosa cells, supporting its role in regulating estrogen production in humans. Reduced CFTR and aromatase expression is also found in PCOS rodent models and human patients. CONCLUSIONS CFTR regulates ovarian estrogen biosynthesis by amplifying the FSH-stimulated signal via the nuclear soluble adenylyl cyclase. The present findings suggest that defective CFTR-dependent regulation of estrogen production may underlie the ovarian disorders seen in CF and PCOS.


Cell Research | 2012

CFTR mediates bicarbonate-dependent activation of miR-125b in preimplantation embryo development

Yong Chao Lu; Hui Chen; Kin Lam Fok; Lai Ling Tsang; Mei Kuen Yu; Xiao Hu Zhang; Jing Chen; Xiaohua Jiang; Yiu Wa Chung; Alvin C.H. Ma; Anskar Y. H. Leung; He-Feng Huang; Hsiao Chang Chan

Although HCO3− is known to be required for early embryo development, its exact role remains elusive. Here we report that HCO3− acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development. The results show that the effect of HCO3− on preimplantation embryo development can be suppressed by interfering the function of a HCO3−-conducting channel, CFTR, by a specific inhibitor or gene knockout. Removal of extracellular HCO3− or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos. Knockdown of miR-125b mimics the effect of HCO3− removal and CFTR inhibition, while injection of miR-125b precursor reverses it. Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos. The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-κB. These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO3− to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.

Collaboration


Dive into the Xiao Hu Zhang's collaboration.

Top Co-Authors

Avatar

Hsiao Chang Chan

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yiu Wa Chung

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Lai Ling Tsang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Kin Lam Fok

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Xiaohua Jiang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Mei Kuen Yu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Hui Chen

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jing Hui Guo

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Dewi Kenneth Rowlands

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jian Da Dong

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge