Xiao-Lian Shi
Xi'an Jiaotong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiao-Lian Shi.
Toxicology Letters | 2016
Qing Su; Jin-Jun Liu; Xiao-Lian Shi; Jing Guo; Hong-Bao Li; Chan-Juan Huo; Yu-Wang Miao; Meng Zhang; Qing Yang; Yu-Ming Kang
AIMS High salt-induced oxidative stress plays an important role in the development of hypertension. Alpha lipoic acid (ALA) is extensively recognized as having a powerful superoxide inhibitory property. In this study, we determined whether ALA supplementation attenuates oxidative stress in hypothalamic paraventricular nucleus (PVN), decreases the sympathetic activity and arterial pressure in high salt-induced hypertension by cross-talking with renin-angiotensin system (RAS) and pro-inflammatory cytokines (PICs). METHODS Male Wistar rats were administered a normal-salt diet (NS, 0.3% NaCl) or a high-salt diet (HS, 8.0% NaCl) for 8 weeks. These rats received ALA (60mg/kg) dissolved in vehicle (0.9% saline) or an equal voleme of vehicle, by gastric perfusion for 9 weeks. RESULTS High salt intake resulted in higher renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP). These rats also had higher levels of superoxide, gp91(phox), gp47(phox) (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), angiotensin II type1 receptor (AT1-R), interleukin-1beta (IL-1β), interleukin-6 (IL-6), and lower levels of interleukin-10 (IL-10) and copper/zinc superoxide dismutase (Cu/Zn-SOD) than control animals. Treatment with ALA significantly attenuated the levels of superoxide, gp91(phox), gp47(phox), ACE, AT1-R, IL-1β and IL-6, increased the levels of IL-10 and Cu/Zn-SOD, and decreased MAP and RSNA compared with high-salt induced hypertensive rats. The mRNA expression of gp47(phox) and gp91(phox) are in accordance with their protein expression. CONCLUSION These findings suggest that supplementation of ALA obviously decreases the sympathetic activity and arterial pressure in high salt-induced hypertension by improving the superoxide inhibitory property, suppressing the activation of RAS and restoring the balance between pro- and anti-inflammatory cytokines in the PVN.
Toxicology and Applied Pharmacology | 2016
Hong-Bao Li; Xiang Li; Chan-Juan Huo; Qing Su; Jing Guo; Zu-Yi Yuan; Guo-Qing Zhu; Xiao-Lian Shi; Jin-Jun Liu; Yu-Ming Kang
Previous findings from our laboratory and others indicate that the main therapeutic effect of angiotensin II type 1 receptor (AT1-R) antagonists is to decrease blood pressure and exert anti-inflammatory effects in the cardiovascular system. In this study, we determined whether AT1-R antagonist telmisartan within the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and hypothalamic inflammation via both the TLR4/MyD88/NF-κB signaling pathway and peroxisome proliferator-activated receptor-γ (PPAR-γ) in the PVN in hypertensive rats. Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were treated for 4weeks through bilateral PVN infusion with the AT1-R antagonist telmisartan (TEL, 10μg/h), or losartan (LOS, 20μg/h), or the PPAR-γ antagonist GW9662 (GW, 100μg/h), or vehicle via osmotic minipump. Mean arterial pressure (MAP) was recorded by a tail-cuff occlusion method. PVN tissue and blood were collected for the measurement of AT1-R, PPAR-γ, pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6), inducible nitric oxide synthase (iNOS), TLR4, MyD88, nuclear factor-kappa B (NF-κB) activity and plasma norepinephrine (NE), respectively. Hypertensive rats exhibited significantly higher level of AT1-R and lower level of PPAR-γ in the PVN. PVN treatment with TEL attenuated MAP, improved cardiac hypertrophy, reduced TNF-α, IL-1β, IL-6, iNOS levels, and plasma NE in SHR but not in WKY rats. These results were associated with reduced TLR4, MyD88 and NF-κB levels and increased PPAR-γ level in the PVN of hypertensive rats. Our findings suggest that TLR4/MyD88/NF-κB signaling and PPAR-γ within the PVN are involved in the beneficial effects of telmisartan in hypertension.
Toxicology Letters | 2016
Qiu-Yue Yi; Hong-Bao Li; Jie Qi; Xiao-Jing Yu; Chan-Juan Huo; Xiang Li; Juan Bai; Hong-Li Gao; Bo Kou; Kai-Li Liu; Dong-Dong Zhang; Wen-Sheng Chen; Guo-Qing Zhu; Xiao-Lian Shi; Yu-Ming Kang
Reactive oxygen species (ROS) in the brain are involved in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG), one of the active compounds in green tea, has anti-oxidant, anti-inflammatory and vascular protective properties. This study was designed to determine whether chronic infusion of EGCG into the hypothalamic paraventricular nucleus (PVN) attenuates ROS and sympathetic activity and delays the progression of hypertension by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and decreasing nuclear factor-kappa B (NF-κB) activity, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar-Kyoto (WKY) rats and SHR received bilateral PVN infusion of EGCG (20μg/h) or vehicle via osmotic minipumps for 4 weeks. SHR showed higher mean arterial pressure, plasma proinflammatory cytokines and circulating norepinephrine (NE) levels compared with WKY rats. SHR also had higher PVN levels of the subunit of NAD(P)H oxidase (gp91phox), ROS, tyrosine hydroxylase, and PICs; increased NF-κB activity; and lower PVN levels of interleukin-10 (IL-10) and 67kDa isoform of glutamate decarboxylase (GAD67) than WKY rats. PVN infusion of EGCG attenuated all these changes in SHR. These findings suggest that SHR have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN. Chronic inhibition of ROS in the PVN restores the balance of neurotransmitters and cytokines in the PVN, thereby attenuating hypertensive response and sympathetic activity.
Scientific Reports | 2016
Hong-Li Gao; Xiao-Jing Yu; Jie Qi; Qiu-Yue Yi; Wang-Hui Jing; Wenyan Sun; Jian-Jun Mu; Zu-Yi Yuan; Xiu-Fang Zhao; Kai-Li Liu; Guo-Qing Zhu; Xiao-Lian Shi; Jin-Jun Liu; Yu-Ming Kang
High salt intake leads to an increase in some proinflammatory cytokines and neurotransmitters involved in the pathogenesis of hypertension. The purpose of this work was to know if oral administration of anti-oxidant and free-radical scavenger CoQ10 may attenuate high salt-induced hypertension via regulating neurotransmitters and cytokines in the hypothalamic paraventricular nucleus (PVN). Adult male Sprague-Dawley (SD) rats were fed with a normal salt diet (NS, 0.3% NaCl) or a high salt diet (HS, 8% NaCl) for 15 weeks to induce hypertension. These rats received CoQ10 (10 mg/kg/day) dissolved in olive oil was given by gavage (10 mg/kg/day) for 15 weeks. HS resulted in higher mean arterial pressure (MAP) and the sympathetic nerve activity (RSNA). These HS rats had higher PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), interleukin (IL)-1β, NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), IL-10, copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. CoQ10 supplementation reduced NE, TH, IL-1β, NOX2 and NOX4 in the PVN, and induced IL-10, Cu/Zn-SOD and GAD67 in the PVN. These findings suggest that CoQ10 supplementation restores neurotransmitters and cytokines in the PVN, thereby attenuating high salt-induced hypertension.
Toxicology Letters | 2017
Juan Bai; Xiao-Jing Yu; Kai-Li Liu; Fang-Fang Wang; Hong-Bao Li; Xiao-Lian Shi; Yan Zhang; Chan-Juan Huo; Xiang Li; Hong-Li Gao; Jie Qi; Jin-Jun Liu; Guo-Qing Zhu; Wen-Sheng Chen; Yu-Ming Kang
Excessive oxidative stress and inflammation in hypothalamic paraventricular nucleus (PVN) are implicated in the pathogenesis of hypertension. It is reported that tert-butylhydroquinone (tBHQ), a nuclear factor erythroid 2-related factor 2(Nrf2)-inducer, has a variety of pharmacological activities such as anti-oxidation and anti-inflammatory effect. The objective of this study was to investigate the effects of tBHQ in high salt induced hypertension and to identify whether the beneficial effects were induced by inhibiting PVN oxidative stress and inflammation. Male Sprague-Dawley rats were fed with high salt diet (HS, 8% NaCl) or normal salt diet (NS, 0.3% NaCl). These rats were administration of tBHQ (150mg/kg/d) by oral gavage for 16 weeks. Our results showed that high salt intake resulted in higher mean arterial pressure, cardiac hypertrophy as well as increased plasma level of norepinephrine and interleukin (IL)-1β, IL-6 compared with NS rats. It increased PVN level of reactive oxygen species, gp91phox, IL-1β, IL-6, p-IKKβ and nuclear factor-kappa B (NF-κB) activity, decreased PVN level of Nrf2 and Cu/Zn-SOD. Chronic administration of tBHQ significantly attenuated these changes in HS rats. These data suggest that the protective effects of tBHQ in salt induced hypertension are partly due to inhibiting oxidative stress and inflammation in PVN.
Scientific Reports | 2017
Hong-Li Gao; Xiao-Jing Yu; Kai-Li Liu; Xiao-Lian Shi; Jie Qi; Yan-Mei Chen; Yan Zhang; Juan Bai; Qiu-Yue Yi; Zhi-Peng Feng; Wen-Sheng Chen; Jin-Jun Liu; Guo-Qing Zhu; Yu-Ming Kang
The imbalance of neurotransmitters and excessive oxidative stress responses contribute to the pathogenesis of hypertension. In this study, we determined whether blockade of p44/42 MAPK pathway in the hypothalamic paraventricular nucleus (PVN) ameliorates the development of hypertension through modulating neurotransmitters and attenuating oxidative stress. Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 6 weeks and were treated with bilateral PVN infusion of PD-98059 (0.025 μg/h), a p44/42 MAPK inhibitor, or vehicle via osmotic minipump. HS resulted in higher mean arterial pressure (MAP) and Fra-like (Fra-LI) activity, and plasma and PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. PD-98059 infusion reduced NE, TH, NOX2 and NOX4 in the PVN, and induced Cu/Zn-SOD and GAD67 in the PVN. It suggests that PVN blockade of p44/42 MAPK attenuates hypertension through modulating neurotransmitters and attenuating oxidative stress.
Scientific Reports | 2017
Qing Su; Chan-Juan Huo; Hong-Bao Li; Kai-Li Liu; Xiang Li; Qing Yang; Xin-Ai Song; Wen-Sheng Chen; Guo-Qing Zhu; Xiao-Lian Shi; Jin-Jun Liu; Yu-Ming Kang
Brain renin-angiotensin system (RAS) could regulate oxidative stress in the paraventricular nucleus (PVN) in the development of hypertension. This study was designed to explore the precise mechanisms of RAS acting on reactive oxygen species (ROS) in salt-induced hypertension. Male Wistar rats were administered with a high-salt diet (HS, 8.0% NaCl) for 8 weeks to induced hypertension. Those rats were received PVN infusion of AT1R antagonist losartan (LOS, 10 μg/h) or microinjection of small interfering RNAs for protein kinase C γ (PKCγ siRNA) once a day for 2 weeks. High salt intake resulted in higher levels of AT1R, PKCγ, Rac1 activity, superoxide and malondialdehyde (MDA) activity, but lower levels of copper/zinc superoxide dismutase (Cu/Zn-SOD), superoxide dismutase (SOD) and glutathione (GSH) in PVN than control animals. PVN infusion of LOS not only attenuated the PVN levels of AT1R, PKCγ, Rac1 activity, superoxide and decreased the arterial pressure, but also increased the PVN antioxidant capacity in hypertension. PVN microinjection of PKCγ siRNA had the same effect on LOS above responses to hypertension but no effect on PVN level of AT1R. These results, for the first time, identified that the precise signaling pathway of RAS regulating ROS in PVN is via AT1R/PKCγ/Rac1 in salt-induced hypertension.
Scientific Reports | 2016
Yan Zhang; Xiao-Jing Yu; Wen-Sheng Chen; Hong-Li Gao; Kai-Li Liu; Xiao-Lian Shi; Xiao-Yan Fan; Lin-Lin Jia; Guo-Qing Zhu; Jin-Jun Liu; Yu-Ming Kang
Exercise training (ExT) has been reported to benefit hypertension; however, the exact mechanisms involved are unclear. We hypothesized that ExT attenuates hypertension, in part, through the renin-angiotensin system (RAS), reactive oxygen species (ROS), and glutamate in the paraventricular nucleus (PVN). Two-kidney, one-clip (2K1C) renovascular hypertensive rats were assigned to sedentary (Sed) or treadmill running groups for eight weeks. Dizocilpine (MK801), a glutamate receptor blocker, or losartan (Los), an angiotensin II type1 receptor (AT1-R) blocker, were microinjected into the PVN at the end of the experiment. We found that 2K1C rats had higher mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These rats also had excessive oxidative stress and overactivated RAS in PVN. Eight weeks of ExT significantly decreased MAP and RSNA in 2K1C hypertensive rats. ExT inhibited angiotensin-converting enzyme (ACE), AT1-R, and glutamate in the PVN, and angiotensin II (ANG II) in the plasma. Moreover, ExT attenuated ROS by augmenting copper/zinc superoxide dismutase (Cu/Zn-SOD) and decreasing p47phox and gp91phox in the PVN. MK801or Los significantly decreased blood pressure in rats. Together, these findings suggest that the beneficial effects of ExT on renovascular hypertension may be, in part, through the RAS-ROS-glutamate pathway in the PVN.
Phytomedicine | 2018
Hua Tian; Yu-Ming Kang; Hong-Li Gao; Xiao-Lian Shi; Li-Yan Fu; Ying Li; Xiu-Yue Jia; Kai-Li Liu; Jie Qi; Hong-Bao Li; Yan-Mei Chen; Wen-Sheng Chen; Guo-Qing Zhu; Xiao-Jing Yu
BACKGROUND Berberine (BBR), a Chinese traditional herbal medicine, has many pharmacologic benefits such as anti-inflammation and anti-oxidation. It is widely used in clinical treatment of cardiovascular diseases such as hypertension. However, the mechanism of how BBR attenuates hypertension through affecting central neural system is not clear. PURPOSE This study was designed to determine whether chronic infusion of BBR into the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. METHODS Two-kidney, one-clip (2K1C) renovascular hypertensive rats were randomly assigned and treated with bilateral PVN infusion of BBR (2μg/h) or vehicle (artificial cerebrospinal fluid) via osmotic minipumps for 28 days. RESULTS 2K1C rats showed higher mean arterial pressure (MAP) and PVN Fra-like activity, plasma levels of norepinephrine (NE), PVN levels of NOX2, NOX4, Erk1/2 and iNOS, and lower PVN levels of copper/zinc superoxide dismutase (Cu/Zn-SOD). Chronic infusion of BBR reduced MAP, PVN Fra-like activity and plasma levels of NE, reduced NOX2, NOX4, Erk1/2, iNOS and induced Cu/Zn-SOD in the PVN. CONCLUSIONS These results suggest that BBR attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway in 2K1C renovascular hypertensive rats.
Neuroscience Bulletin | 2018
Xiao-Jing Yu; Yu-Wang Miao; Hong-Bao Li; Qing Su; Kai-Li Liu; Li-Yan Fu; Yi-Kang Hou; Xiao-Lian Shi; Ying Li; Jian-Jun Mu; Wen-Sheng Chen; Guo-Qing Zhu; Philip J. Ebenezer; Joseph Francis; Yu-Ming Kang
Angiotensin (Ang)-(1–7) is an important biologically-active peptide of the renin-angiotensin system. This study was designed to determine whether inhibition of Ang-(1–7) in the hypothalamic paraventricular nucleus (PVN) attenuates sympathetic activity and elevates blood pressure by modulating pro-inflammatory cytokines (PICs) and oxidative stress in the PVN in salt-induced hypertension. Rats were fed either a high-salt (8% NaCl) or a normal salt diet (0.3% NaCl) for 10 weeks, followed by bilateral microinjections of the Ang-(1–7) antagonist A-779 or vehicle into the PVN. We found that the mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma norepinephrine (NE) were significantly increased in salt-induced hypertensive rats. The high-salt diet also resulted in higher levels of the PICs interleukin-6, interleukin-1beta, tumor necrosis factor alpha, and monocyte chemotactic protein-1, as well as higher gp91phox expression and superoxide production in the PVN. Microinjection of A-779 (3 nmol/50 nL) into the bilateral PVN of hypertensive rats not only attenuated MAP, RSNA, and NE, but also decreased the PICs and oxidative stress in the PVN. These results suggest that the increased MAP and sympathetic activity in salt-induced hypertension can be suppressed by blockade of endogenous Ang-(1–7) in the PVN, through modulation of PICs and oxidative stress.