Xiao-Meng Chen
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiao-Meng Chen.
Heart Rhythm | 2016
Jian-Wen Hou; Wei Li; Kai Guo; Xiao-Meng Chen; Yi-He Chen; Chang-Yi Li; Bu-Chang Zhao; Jing Zhao; Hong Wang; Yue-Peng Wang; Yi-Gang Li
BACKGROUNDnPrevious studies have demonstrated that WenXin KeLi (WXKL), a traditional Chinese medicine, can exert antiarrhythmic properties through complex multichannel inhibition, but its pharmacologic effect remains to be elucidated, especially in the cardiac conductive system.nnnOBJECTIVEnTo explore the antiarrhythmic property of WXKL in cardiac Purkinje cells (PCs).nnnMETHODSnPCs were isolated from rabbit hearts and action potentials (APs) and ion currents were recorded by whole-cell patch clamp technique. Anemonia toxin II (ATX-II) and isoproterenol (ISO) were used to induce early or delayed afterdepolarizations (EADs, DADs) or triggered activities (TAs).nnnRESULTSnWXKL (1 g/L and 5 g/L) significantly abbreviated the action potential duration (APD) of PCs in a dose- and rate-dependent manner. Treatment of PCs with ATX-II (2 nM) prolonged APD and induced EADs, which were significantly suppressed by WXKL. WXKL (1, 5 g/L) also inhibited ISO-induced EADs, DADs, and TAs. To reveal the ionic mechanisms, we studied the effects of WXKL on late sodium current (I(NaL)), peak sodium current (I(NaP)), and L-type calcium currents (ICaL) in PCs. WXKL-attenuated ATX-II (5 nM) induced I(NaL) augmentation and blocked I(NaL) with an IC50 of 4.3 ± 0.5 g/L, which is 3- to 4-fold more selective than that of I(NaP) (13.3 ± 0.9 g/L) and ICaL (17.6 ± 1.4 g/L). Moreover, WXKL exerted significantly less use-dependent block of I(NaP) than that of flecainide, indicating its lower proarrhythmic effect.nnnCONCLUSIONSnWXKL exhibits antiarrhythmic properties in cardiac PCs via selective inhibition of I(NaL).
Europace | 2015
Ling-Chao Yang; Peng-Pai Zhang; Xiao-Meng Chen; Chang-Yi Li; Jian Sun; Jian-Wen Hou; Ren-Hua Chen; Yue-Peng Wang; Yi-Gang Li
AIMSnMyocardial infarction (MI) induces neural remodelling of the left stellate ganglion (LSG), which may contribute to ischaemia-induced arrhythmias. The neural chemorepellent Semaphorin 3a (Sema3a) has been identified as a negative regulator of sympathetic innervation in the LSG and heart. We previously reported that overexpression of Sema3a in the border zone could reduce the arrhythmogenic effects of cardiac sympathetic hyperinnervation post-MI. This study investigated whether Sema3a overexpression within the LSG confers an antiarrhythmic effect after MI through decreasing extra- and intra-cardiac neural remodelling.nnnMETHODS AND RESULTSnSprague-Dawley rats were subjected to MI, and randomly allocated to intra-LSG microinjection of either phosphate-buffered saline (PBS), adenovirus encoding green fluorescent protein (AdGFP), or adenovirus encoding Sema3a (AdSema3a). Sham-operated rats served as controls. Two weeks after infarction, MI-induced nerve sprouting and sympathetic hyperinnervation in the LSG and myocardium were significantly attenuated by intra-LSG injection with AdSema3a, as assessed by immunohistochemistry and western blot analysis of growth-associated protein 43 and tyrosine hydroxylase. This was also confirmed by sympathetic nerve function changes assessed by cardiac norepinephrine content. Additionally, intra-LSG injection with AdSema3a alleviated MI-induced accumulation of dephosphorylated connexin 43 in the infarct border zone. Furthermore, Sema3a overexpression in the LSG reduced the incidence of inducible ventricular tachyarrhythmia by programmed electrical stimulation post-MI, and arrhythmia scores were significantly lower in the AdSema3a group than in the PBS and AdGFP groups.nnnCONCLUSIONnSemaphorin 3a overexpression in the LSG ameliorates the inducibility of ventricular arrhythmias after MI, mainly through attenuation of neural remodelling within the cardiac-neuraxis.
Hypertension | 2017
Qing Zhou; Si-Si Wei; Hong Wang; Qian Wang; Wei Li; Gang Li; Jian-Wen Hou; Xiao-Meng Chen; Jie Chen; Wei-Ping Xu; Yi-Gang Li; Yue-Peng Wang
Cardiac hypertrophy is characterized by increased myofibrillogenesis. Angiotensin II (Ang-II) is an essential mediator of the pressure overload–induced cardiac hypertrophy in part through RhoA/ROCK (small GTPase/Rho-associated coiled-coil containing protein kinase) pathway. FHOD3 (formin homology 2 domain containing 3), a cardiac-restricted member of diaphanous-related formins, is crucial in regulating myofibrillogenesis in cardiomyocytes. FHOD3 maintains inactive through autoinhibition by an intramolecular interaction between its C- and N-terminal domains. Phosphorylation of the 3 highly conserved residues (1406S, 1412S, and 1416T) within the C terminus (CT) of FHOD3 by ROCK1 is sufficient for its activation. However, it is unclear whether ROCK-mediated FHOD3 activation plays a role in the pathogenesis of Ang-II–induced cardiac hypertrophy. In this study, we detected increases in FHOD3 expression and phosphorylation in cardiomyocytes from Ang-II–induced rat cardiac hypertrophy models. Valsartan attenuated such increases. In cultured neonate rat cardiomyocytes, overexpression of phosphor-mimetic mutant FHOD3-DDD, but not wild-type FHOD3, resulted in myofibrillogenesis and cardiomyocyte hypertrophy. Expression of a phosphor-resistant mutant FHOD3-AAA completely abolished myofibrillogenesis and attenuated Ang-II–induced cardiomyocyte hypertrophy. Pretreatment of neonate rat cardiomyocytes with ROCK inhibitor Y27632 reduced Ang-II–induced FHOD3 activation and upregulation, suggesting the involvement of ROCK activities. Silencing of ROCK2, but not ROCK1, in neonate rat cardiomyocytes, significantly lessened Ang-II–induced cardiomyocyte hypertrophy. ROCK2 can directly phosphorylate FHOD3 at both 1412S and 1416T in vitro and is more potent than ROCK1. Both kinases failed to phosphorylate 1406S. Coexpression of FHOD3 with constitutively active ROCK2 induced more stress fiber formation than that with constitutively active ROCK1. Collectively, our results demonstrated the importance of ROCK2 regulated FHOD3 expression and activation in Ang-II–induced myofibrillogenesis, thus provided a novel mechanism for the pathogenesis of Ang-II–induced cardiac hypertrophy.
Advanced Materials | 2017
Jing Ren; Quanfu Xu; Xiao-Meng Chen; Wei Li; Kai Guo; Yang Zhao; Qian Wang; Zhitao Zhang; Huisheng Peng; Yi-Gang Li
Cardiac engineering of patches and tissues is a promising option to restore infarcted hearts, by seeding cardiac cells onto scaffolds and nurturing their growth in vitro. However, current patches fail to fully imitate the hierarchically aligned structure in the natural myocardium, the fast electrotonic propagation, and the subsequent synchronized contractions. Here, superaligned carbon-nanotube sheets (SA-CNTs) are explored to culture cardiomyocytes, mimicking the aligned structure and electrical-impulse transmission behavior of the natural myocardium. The SA-CNTs not only induce an elongated and aligned cell morphology of cultured cardiomyocytes, but also provide efficient extracellular signal-transmission pathways required for regular and synchronous cell contractions. Furthermore, the SA-CNTs can reduce the beat-to-beat and cell-to-cell dispersion in repolarization of cultured cells, which is essential for a normal beating rhythm, and potentially reduce the occurrence of arrhythmias. Finally, SA-CNT-based flexible one-piece electrodes demonstrate a multipoint pacing function. These combined high properties make SA-CNTs promising in applications in cardiac resynchronization therapy in patients with heart failure and following myocardial infarctions.
Journal of Molecular and Cellular Cardiology | 2017
Yi-He Chen; Qian Wang; Chang-Yi Li; Jian-Wen Hou; Xiao-Meng Chen; Qing Zhou; Jie Chen; Yue-Peng Wang; Yi-Gang Li
Cardiac fibrosis (CF), a repairing process following myocardial infarction (MI), is characterized by abnormal proliferation of cardiac fibroblasts and excessive deposition of extracellular matrix (ECM) resulting in inevitable resultant heart failure. TGF-β (transforming growth factor-β)/ALK5 (Activin receptor-like kinase 5)/Smad2/3/4 pathways have been reported to be involved in the process. Recent studies have implicated both activin and its specific downstream component ALK4 in stimulating fibrosis in non-cardiac organs. We recently reported that ALK4 is upregulated in the pressure-overloaded heart and its partial inhibition attenuated the pressure overload-induced CF and cardiac dysfunction. However, the role of ALK4 in the pathogenesis of MI-induced CF, which is usually more severe than that induced by pressure-overload, remains unknown. Here we report: 1) In a wild-type mouse model of MI, ALK4 upregulation was restricted in the fibroblasts of the infarct border zone; 2) In contrast, ALK4+/- mice with a haplodeficiency of ALK4 gene, showed a significantly attenuated CF in the border zone, with a smaller scar size, a preserved cardiac function and an improved survival rate post-MI; 3) Similarly to pressure-overloaded heart, these beneficial effects might be through a partial inactivation of the Smad3/4 pathway but not MAPK cascades; 4) The apoptotic rate of the cardiomyocytes were indistinguishable in the border zone of the wild-type control and ALK4+/- mice; 5) Cardiac fibroblasts isolated from ALK4+/- mice showed reduced migration, proliferation and ECM synthesis in response to hypoxia. These results indicate that partial inhibition of ALK4 may reduce MI-induced CF, suggesting ALK4 as a novel target for inhibition of unfavorable CF and for preservation of LV systolic function induced by not only pressure-overload but also MI.
Heart and Vessels | 2018
Xiao-Meng Chen; Kai Guo; Hong Li; Qiu-Fen Lu; Chao Yang; Ying Yu; Jian-Wen Hou; Yudong Fei; Jian Sun; Jun Wang; Yi-Xue Li; Yi-Gang Li
Patients with high-risk long QT syndrome (LQTS) mutations may experience life-threatening cardiac events. The present study sought to characterize a novel pathogenic mutation, KCNQ1p.Thr312del, in a Chinese LQT1 family. Clinical and genetic analyses were performed to identify this novel causative gene mutation in this LQTS family. Autosomal dominant inheritance of KCNQ1p.T312del was demonstrated in the three-generation pedigree. All mutation carriers presented with prolonged QT intervals and experienced recurrent syncope during exercise or emotional stress. The functional consequences of the mutant channel were investigated by computer homology modeling as well as whole-cell patch-clamp, western-blot and co-immunoprecipitation techniques using transfected mammalian cells. T312 is in the selectivity filter (SF) of the pore region of the KCNQ1-encoded channel. Homology modeling suggested that secondary structure was altered in the mutant SF compared with the wild-type (WT) SF. There were no significant differences in Kv7.1 expression, membrane trafficking or physical interactions with KCNE1-encoded subunits between the WT and mutant transfected channels. However, the KCNQ1p.T312del channels expressed in transfected cells were non-functional in the absence or presence of auxiliary KCNE1-subunits. Dominant-negative suppression of current density and decelerated activation kinetics were observed in cells expressing KCNQ1WT and KCNQ1p.T312del combined with KCNE1 (KCNQ1WT/p.T312delu2009+u2009KCNE1 channels). Those electrophysiological characteristics underlie the pathogenesis of this novel mutation and also suggest a high risk of cardiac events in patients carrying KCNQ1p.T312del. Although protein kinase A-dependent current increase was preserved, a significant suppression of rate-dependent current facilitation was noted in the KCNQ1WT/p.T312delu2009+u2009KCNE1 channels compared to the WT channels during 1- and 2-Hz stimulation, which was consistent with the patients’ phenotype being triggered by exercise. Overall, KCNQ1p.Thr312del induces a loss of function in channel electrophysiology, and it is a high-risk mutation responsible for LQT1.
Journal of Cellular and Molecular Medicine | 2015
Kai Guo; Yue-Peng Wang; Zhiwen Zhou; Yibo Jiang; Wei Li; Xiao-Meng Chen; Yigang Li
Background: Phospholemman (PLM) is an important phosphorylation substrate for protein kinases A and C in the heart. Until now, the association between PLM phosphorylation status and L‐type calcium channels (LTCCs) gating has not been fully understood. We investigated the kinetics of LTCCs in HEK 293T cells expressing phosphomimetic or nonphosphorylatable PLM mutants. Methods: The LTCCs gating was measured in HEK 293T cells transfected with LTCC and wild‐type (WT) PLM, phosphomimetic or nonphosphorylatable PLM mutants: 6263AA, 6869AA, AAAA, 6263DD, 6869DD or DDDD. Results: WT PLM significantly slowed LTCCs activation and deactivation while enhanced voltage‐dependent inactivation (VDI). PLM mutants 6869DD and DDDD significantly increased the peak of the currents. 6263DD accelerated channel activation, while 6263AA slowed it more than WT PLM. 6869DD significantly enhanced PLM‐induced increase of VDI. AAAA slowed the channel activation more than 6263AA, and DDDD accelerated the channel VDI more than 6869DD. Conclusions: Our results demonstrate that phosphomimetic PLM could stimulate LTCCs and alter their dynamics, while PLM nonphosphorylatable mutant produced the opposite effects.
Hypertension | 2017
Qing Zhou; Si-Si Wei; Hong Wang; Qian Wang; Wei Li; Gang Li; Jian-Wen Hou; Xiao-Meng Chen; Jie Chen; Wei-Ping Xu; Yi-Gang Li; Yue-Peng Wang
National journal of andrology | 2007
Xiao-Meng Chen; Liu Lm; Wang Y; Zhang Zm; Wang Zx; Xu Wx; Qiao Zd
Journal of the American College of Cardiology | 2017
Qian Wang; Ying Yu; Yi-He Chen; Li Changyi; Jian-Wen Hou; Xiao-Meng Chen; Yudong Fei; Yi-Gang Li