Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Min Ren is active.

Publication


Featured researches published by Xiao-Min Ren.


Environmental Science: Processes & Impacts | 2013

Molecular toxicology of polybrominated diphenyl ethers: nuclear hormone receptor mediated pathways

Xiao-Min Ren; Liang-Hong Guo

Polybrominated diphenyl ethers (PBDEs) are used in large quantities as flame retardant additives in commercial products. Bio-monitoring data show that PBDE concentrations have increased rapidly in the bodies of wildlife and human over the last few decades. Based on the studies on experimental animals, the toxicological endpoints of exposure to PBDEs are likely to be thyroid homeostasis disruption, neuro-developmental deficits, reproductive ineffectiveness and even cancer. Unfortunately, the available molecular toxicological evidence for these endpoints is still very limited. This review focuses on the recent studies on the molecular mechanisms of PBDE toxicities carried out through the hormone receptor pathways, including thyroid hormone receptor, estrogen receptor, androgen receptor, progesterone receptor and aryl hydrocarbon receptor pathways. The general approach in the mechanistic investigation is to examine the in vitro direct binding of a PBDE with a receptor, the in vitro recruitment of a co-activator or co-repressor by the ligand-bound receptor, and the participation of the ligand in the receptor-mediated transcription pathways in cells. It is hoped that further studies in this area would provide more insights into the potential risks of PBDEs to human health.


Environmental Science & Technology | 2013

Structure-Based Investigation on the Interaction of Perfluorinated Compounds with Human Liver Fatty Acid Binding Protein

Lianying Zhang; Xiao-Min Ren; Liang-Hong Guo

Perfluorinated compounds (PFCs) are known to accumulate in liver and induce hepatotoxicity on experimental animals. Liver fatty acid binding protein (L-FABP) is expressed highly in hepatocytes and binds fatty acids. PFCs may bind with FABP and change their ADME and toxicity profile. In the present study, the binding interaction of 17 structurally diverse PFCs with human L-FABP was investigated to assess their potential disruption effect on fatty acid binding. The binding affinity of twelve perfluorinated carboxylic acids (PFCAs), as determined by fluorescence displacement assay, increased significantly with their carbon number from 4 to 11, and decreased slightly when the number was over 11. The three perfluorinated sulfonic acids (PFSAs) displayed comparable affinity, but no binding was detected for the two fluorotelomer alcohols. Circular dichroism results showed that PFC binding induced distinctive structural changes of the protein. Molecular docking revealed that the driving forces for the binding of PFCs with FABP were predominantly hydrophobic and hydrogen-bonding interactions, and the binding geometry was dependent on both the size and rigidity of the PFCs. Based on the binding constant obtained in this work, the possibility of in vivo competitive displacement of fatty acids from FABP by PFCs was estimated.


Archives of Toxicology | 2015

Structure–activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor

Xiao-Min Ren; Yin-Feng Zhang; Liang-Hong Guo; Zhan-Fen Qin; Qi-Yan Lv; Lianying Zhang

Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003–0.05 compared with triiodothyronine (T3). A structure–binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR.


Biochemistry | 2016

Investigation of the Binding Interaction of Fatty Acids with Human G Protein-Coupled Receptor 40 Using a Site-Specific Fluorescence Probe by Flow Cytometry

Xiao-Min Ren; Lin-Ying Cao; Jing Zhang; Wei-Ping Qin; Yu Yang; Bin Wan; Liang-Hong Guo

Human G protein-coupled receptor 40 (hGPR40), with medium- and long-chain free fatty acids (FFAs) as its natural ligands, plays an important role in the enhancement of glucose-dependent insulin secretion. To date, information about the direct binding of FFAs to hGPR40 is very limited, and how carbon-chain length affects the activities of FFAs on hGPR40 is not yet understood. In this study, a fluorescein-fasiglifam analogue (F-TAK-875A) conjugate was designed and synthesized as a site-specific fluorescence probe to study the interaction of FFAs with hGPR40. hGPR40 was expressed in human embryonic kidney 293 cells and labeled with F-TAK-875A. By using flow cytometry, competitive binding of FFA and F-TAK-875A to hGPR40-expressed cells was measured. Binding affinities of 18 saturated FFAs, with carbon-chain lengths ranging from C6 to C23, were analyzed. The results showed that the binding potencies of FFAs to hGPR40 were dependent on carbon length. There was a positive correlation between length and binding potency for seven FFAs (C9-C15), with myristic acid (C15) showing the highest potency, 0.2% relative to TAK-875. For FFAs with a length of fewer than C9 or more than C15, they had very weak or no binding. Molecular docking results showed that the binding pocket of TAK-875 in hGPR40 could enclose FFAs with lengths of C15 or fewer. However, for FFAs with lengths longer than C15, part of the alkyl chain extended out of the binding pocket. This study provided insights into the structural dependence of FFAs binding to and activation of hGPR40.


Toxicology and Applied Pharmacology | 2014

Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ.

Lianying Zhang; Xiao-Min Ren; Bin Wan; Liang-Hong Guo

Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity.


Thin Solid Films | 1997

The effects of detected gases on spectroscopic properties of phthalocyanine Langmuir-Blodgett films

Dapeng Jiang; Lianqi Zhang; Yanhua Fan; Xiao-Min Ren; Z.S. Guan; Yanfang Li; Ande Lu

Abstract Tetrakis-4-(2,4-di-amylphenoxy) phthalocyaninato-polysiloxane (R 4 PcPS) was derived from the correspondingly substituted phthalocyaninatosilicon hydroxide (R 4 PcSi (OH) 2 ). The photoluminescence and excitation spectra of R 4 PcPS and P 4 PcSi (OH) 2 solutions in chloroform were shown. The absorption spectra of R 4 PcPS Langmuir-Blodgett films, before and after adsorbing I 2 , were compared. The infrared absorption spectra of an asymmetrically substituted copper [tri-4-(2,4-di-amylenoxy)-mono-4-(2-methoxyethoxy)] phthalocyanine (AsyCuPc) Langmuir-Blodgett films, before and after adsorbing NH 3 , were studied.


Environmental Science & Technology | 2017

Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway

Lin-Ying Cao; Xiao-Min Ren; Chuan-Hai Li; Jing Zhang; Wei-Ping Qin; Yu Yang; Bin Wan; Liang-Hong Guo

Numerous studies have indicated estrogenic disruption effects of bisphenol A (BPA) analogues. Previous mechanistic studies were mainly focused on their genomic activities on nuclear estrogen receptor pathway. However, their nongenomic effects through G protein-coupled estrogen receptor (GPER) pathway remain poorly understood. Here, using a SKBR3 cell-based fluorescence competitive binding assay, we found six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and bisphenol B (BPB) displaying much higher (∼9-fold) binding affinity than BPA. Molecular docking also demonstrated the binding of these BPA analogues to GPER. By measuring calcium mobilization and cAMP production in SKBR3 cells, we found the binding of these BPA analogues to GPER lead to the activation of subsequent signaling pathways. Consistent with the binding results, BPAF and BPB presented higher agonistic activity than BPA with the lowest effective concentration (LOEC) of 10 nM. Moreover, based on the results of Boyden chamber and wound-healing assays, BPAF and BPB displayed higher activity in promoting GPER mediated SKBR3 cell migration than BPA with the LOEC of 100 nM. Overall, we found two BPA analogues BPAF and BPB could exert higher estrogenic effects than BPA via GPER pathway at nanomolar concentrations.


Scientific Reports | 2017

Length effects on the dynamic process of cellular uptake and exocytosis of single-walled carbon nanotubes in murine macrophage cells

Xuejing Cui; Bin Wan; Yu Yang; Xiao-Min Ren; Liang-Hong Guo

Cellular uptake and exocytosis of SWCNTs are fundamental processes determining their intracellular concentration and effects. Despite the great potential of acid-oxidized SWCNTs in biomedical field, understanding of the influencing factors on these processes needs to be deepened. Here, we quantitatively investigated uptake and exocytosis of SWCNTs in three lengths-630 (±171) nm (L-SWCNTs), 390 (±50) nm (M-SWCNTs), and 195 (±63) nm (S-MWCNTs) in macrophages. The results showed that the cellular accumulation of SWCNTs was a length-independent process and non-monotonic in time, with the most SWCNTs (3950 fg/cell) accumulated at 8 h and then intracellular SWCNTs dropped obviously with time. The uptake rate of SWCNTs decreased with increasing concentration, suggesting that intracellular SWCNTs accumulation is a saturable process. After refreshing culture medium, we found increasing SWCNTs in supernatant and decreasing intracellular SWCNTs over time, confirming the exocytosis occurred. Selective inhibition of endocytosis pathways showed that the internalization of SWCNTs involves several pathways, in the order of macropinocytosis> caveolae-mediated endocytosis> clathrin-dependent endocytosis. Intriguingly, clathrin-mediated endocytosis is relatively important for internalizing shorter SWCNTs. The dynamic processes of SWCNTs uptake and exocytosis and the mechanisms revealed by this study may render a better understanding on SWCNT toxicity and facilitate the design of CNT products with mitigated toxicity and desired functions.


Toxicology | 2016

Binding interactions of perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological implications

Xiao-Min Ren; Wei-Ping Qin; Lin-Ying Cao; Jing Zhang; Yu Yang; Bin Wan; Liang-Hong Guo

Perfluoroalkyl substances (PFASs) have been shown to cause abnormal levels of thyroid hormones (THs) in experimental animals, but the molecular mechanism is poorly understood. Here, a fluorescence displacement assay was used to determine the binding affinities of 16 PFASs with two major TH transport proteins, transthyretin (TTR) and thyroxine-binding globulin (TBG). Most of the tested PFASs bound TTR with relative potency (RP) values of 3×10(-4) to 0.24 when compared with that of the natural ligand thyroxine, whereas fluorotelomer alcohols did not bind. Only perfluorotridecanoic acid and perfluorotetradecanoic acid bound TBG, with RP values of 2×10(-4) when compared with that of thyroxine. Based on these results, it was estimated that displacement of T4 from TTR by perfluorooctane sulfonate and perfluorooctanoic acids would be significant for the occupationally exposed workers but not the general population. Structure-binding analysis revealed that PFASs with a medium chain length and a sulfonate acid group are optimal for TTR binding, and PFASs with lengths longer than 12 carbons are optimal for TBG binding. Three mutant proteins were prepared to examine crucial residues involved in the binding of PFASs to TH transport proteins. TTR with a K15G mutation and TBG with either a R378G or R381G mutation showed decreased binding affinity to PFASs, indicating that these residues play key roles in the interaction with the compounds. Molecular docking showed that the PFASs bind to TTR with their acid group forming a hydrogen bond with K15 and the hydrophobic chain towards the interior. PFASs were modeled to bind TBG with their acid group forming a hydrogen bond with R381 and the hydrophobic chain extending towards R378. The findings aid our understanding of the behavior and toxicity of PFASs on the thyroid hormone system.


Biosensors and Bioelectronics | 2017

Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation

Yu Yang; Yuxin Gu; Bin Wan; Xiao-Min Ren; Liang-Hong Guo

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimers disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT.

Collaboration


Dive into the Xiao-Min Ren's collaboration.

Top Co-Authors

Avatar

Liang-Hong Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Wan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lin-Ying Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuan-Hai Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi-Yan Lv

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuejing Cui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lianying Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge