Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-ming Liu is active.

Publication


Featured researches published by Xiao-ming Liu.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Far Infrared Therapy Inhibits Vascular Endothelial Inflammation via the Induction of Heme Oxygenase-1

Chih-Ching Lin; Xiao-ming Liu; Kelly J. Peyton; Hong Wang; Wu-Chang Yang; Shing-Jong Lin; William Durante

Objective—Survival of arteriovenous fistulas (AVFs) in hemodialysis patients is associated with both far infrared (FIR) therapy and length polymorphisms of the heme oxygenase-1 (HO-1) promoter. In this study, we evaluated whether there is an interaction between FIR radiation and HO-1 in regulating vascular inflammation. Methods and Results—Treatment of cultured human umbilical vein endothelial cells (ECs) with FIR radiation stimulated HO-1 protein, mRNA, and promoter activity. HO-1 induction was dependent on the activation of the antioxidant responsive element/NF-E2-related factor-2 complex, and was likely a consequence of heat stress. FIR radiation also inhibited tumor necrosis factor (TNF)-&agr;–mediated expression of E-selectin, vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, monocyte chemoattractant protein-1, interleukin-8, and the cytokine-mediated adhesion of monocytes to ECs. The antiinflammatory action of FIR was mimicked by bilirubin, and was reversed by the HO inhibitor, tin protoporphyrin-IX, or by the selective knockdown of HO-1. Finally, the antiinflammatory effect of FIR was also observed in patients undergoing hemodialysis. Conclusions—These results demonstrate that FIR therapy exerts a potent antiinflammatory effect via the induction of HO-1. The ability of FIR therapy to inhibit inflammation may play a critical role in preserving blood flow and patency of AVFs in hemodialysis patients.


The FASEB Journal | 2004

Platelet-derived growth factor stimulates LAT1 gene expression in vascular smooth muscle: role in cell growth

Xiao-ming Liu; Sylvia V. Reyna; Diana Ensenat; Kelly J. Peyton; Hong Wang; Andrew I. Schafer; William Durante

Platelet‐derived growth factor (PDGF) contributes to vascular disease by stimulating the growth of vascular smooth muscle cells (SMCs). Since amino acids are required for cell growth, the present study examined the effect of PDGF on system L amino acid transport, which is the predominant cellular pathway for the uptake of essential amino acids. System L amino acid transport was monitored by measuring the uptake of L‐leucine. Treatment of SMCs with PDGF stimulated L‐leucine transport in a concentration‐ and time‐dependent manner, and this was associated with a selective increase in LAT1 mRNA and protein. PDGF failed to induce the expression of the other system L transport proteins, LAT2 and the heavy chain of the 4F2 cell surface antigen. The induction of LAT1 by PDGF was dependent on de novo RNA and protein synthesis and on mTOR activity. Serum, thrombin, and angiotensin II likewise stimulated L‐leucine transport by inducing LAT1 expression. Inhibition of system L amino acid transport by the model substrate 2‐aminobicyclo‐(2,2,1)‐heptane‐2‐carboxylic acid blocked growth factor‐mediated SMC proliferation and induced SMC apoptosis, whereas it had no effect on quiescent cells. These results demonstrate that growth factors stimulate system L amino acid transport by inducing LAT1 gene expression and that system L amino acid transport is essential for SMC proliferation and survival. The capacity of vascular mitogens to induce LAT1 expression may represent a basic mechanism by which these agents promote cell growth and provide a novel therapeutic target for treatment of vasculoproliferative disorders.


Experimental Biology and Medicine | 2003

Antiapoptotic Action of Carbon Monoxide on Cultured Vascular Smooth Muscle Cells

Xiao-ming Liu; Gary B. Chapman; Kelly J. Peyton; Andrew I. Schafer; William Durante

Vascular smooth muscle cells (SMCs) generate carbon monoxide (CO) from the degradation of heme by the enzyme heme oxygenase. Because recent studies indicate that CO influences the properties of vascular SMCs, we examined whether this diatomic gas regulates apoptosis in vascular SMCs. Treatment of cultured rat aortic SMCs with a cytokine cocktail consisting of interleukin-1β (5 ng/ml), tumor necrosis factor-α (20 ng/ml), and interferon-γ (200 U/ml) for 48 hr stimulated apoptosis, as demonstrated by DNA laddering, caspase-3 activation, and annexin V staining. However, the exogenous addition of CO (200 ppm) completely blocked cytokine-mediated apoptosis. The antiapoptotic action of CO was partially reversed by the soluble guanylate cyclase inhibitor, H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 μM). In contrast, the p38 mitogen-activated protein kinase inhibitor, SB203580 (10 μM), had no effect on SMC apoptosis. These findings indicate that CO is a potent inhibitor of vascular SMC apoptosis and that it blocks apoptosis, in part, by activating the cGMP signaling pathway. The ability of CO to inhibit vascular SMC apoptosis may play a critical role in attenuating lesion formation at sites of arterial damage.


American Journal of Physiology-cell Physiology | 2009

Hypochlorous acid-induced heme oxygenase-1 gene expression promotes human endothelial cell survival.

Yongzhong Wei; Xiao-ming Liu; Kelly J. Peyton; Hong Wang; Fruzsina K. Johnson; Robert A. Johnson; William Durante

Hypochlorous acid (HOCl) is a unique oxidant generated by the enzyme myeloperoxidase that contributes to endothelial cell dysfunction and death in atherosclerosis. Since myeloperoxidase localizes with heme oxygenase-1 (HO-1) in and around endothelial cells of atherosclerotic lesions, the present study investigated whether there was an interaction between these two enzymes in vascular endothelium. Treatment of human endothelial cells with the myeloperoxidase product HOCl stimulated a concentration- and time-dependent increase in HO-1 protein that resulted in a significant rise in carbon monoxide (CO) production. The induction of HO-1 protein was preceded by a prominent increase in HO-1 mRNA and total and nuclear factor-erythroid 2-related factor 2 (Nrf2). In addition, HOCl induced a significant rise in HO-1 promoter activity that was blocked by mutating the antioxidant response element (ARE) in the promoter or by overexpressing a dominant-negative mutant of Nrf2. The HOCl-mediated induction of Nrf2 or HO-1 was blocked by the glutathione donor N-acetyl-l-cysteine but was unaffected by ascorbic or uric acid. Finally, treatment of endothelial cells with HOCl stimulated mitochondrial dysfunction, caspase-3 activation, and cell death that was potentiated by the HO inhibitor, tin protoporphyrin-IX, or by the knockdown of HO-1, and reversed by the exogenous administration of biliverdin, bilirubin, or CO. These results demonstrate that HOCl induces HO-1 gene transcription via the activation of the Nrf2/ARE pathway to counteract HOCl-mediated mitochondrial dysfunction and cell death. The ability of HOCl to activate HO-1 gene expression may represent a critical adaptive response to maintain endothelial cell viability at sites of vascular inflammation and atherosclerosis.


Journal of Pharmacology and Experimental Therapeutics | 2012

Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells.

Kelly J. Peyton; Xiao-ming Liu; Yajie Yu; Benjamin Yates; William Durante

AMP-activated protein kinase (AMPK) is an evolutionary conserved energy-sensing enzyme that regulates cell metabolism. Emerging evidence indicates that AMPK also plays an important role in modulating endothelial cell function. In the present study, we investigated whether AMPK modulates endothelial cell growth. Treatment of cultured human umbilical vein endothelial cells with the AMPK activators 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), 6,7-dihydro-4-hydroxy-3-(2′-hydroxy[1,1′-biphenyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-carbonitrile (A-769662), or metformin inhibited cell proliferation and DNA synthesis. The antiproliferative action of AICAR was largely prevented by the adenosine kinase inhibitor 5′-iodotubercidin and mimicked by infecting endothelial cells with an adenovirus expressing constitutively active AMPK. In contrast, pharmacological blockade of endothelial nitric oxide synthase or heme oxygenase-1 activity failed to reverse the inhibition of endothelial cell growth by AICAR. Flow cytometry experiments revealed that pharmacological activation of AMPK arrested endothelial cells in the G0/G1 phase of the cell cycle, and this was associated with increases in p53 phosphorylation and p53, p21, and p27 protein expression and decreases in cyclin A protein expression and retinoblastoma protein phosphorylation. In addition, silencing p21 and p27 expression partially restored the mitogenic response of AMPK-activated cells. Finally, activation of AMPK by AICAR blocked the migration of endothelial cells after scrape injury and stimulated tube formation by endothelial cells plated onto Matrigel-coated plates. In conclusion, these studies demonstrate that AMPK activation inhibits endothelial cell proliferation by elevating p21 and p27 expression. In addition, they show that AMPK regulates endothelial cell migration and differentiation and identify AMPK as an attractive therapeutic target in treating diseases associated with aberrant endothelial cell growth.


Biochemical Pharmacology | 2011

Compound C stimulates heme oxygenase-1 gene expression via the Nrf2-ARE pathway to preserve human endothelial cell survival.

Xiao-ming Liu; Kelly J. Peyton; Ahmad R. Shebib; Hong Wang; William Durante

We recently identified adenosine monophosphate-activated protein kinase (AMPK) as a novel inducer of heme oxygenase-1 (HO-1) and surprisingly found that compound C (6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine), a cell-permeable inhibitor of AMPK, could also elevate HO-1 suggesting other AMPK-independent actions for this agent. In this study, we investigated the biochemical mechanism by which compound C stimulates HO-1 expression in human endothelial cells (ECs) and determined the biological significance of the induction of HO-1 by compound C in these cells. Compound C stimulated a concentration- and time-dependent increase in HO-1 expression and an increase in HO-1 promoter activity that was abrogated by mutating the antioxidant responsive elements (AREs) in the HO-1 promoter or by overexpressing a dominant negative mutant of NF-E2-related factor 2 (Nrf2). Compound C also stimulated Nrf2 expression this was associated with an increase in the production of reactive oxygen species and with a decline in intracellular glutathione levels. Interestingly, the glutathione donor N-acetyl-l-cysteine or the NADPH oxidase inhibitor apocynin blocked the induction of HO-1 by compound C. Finally, compound C stimulated EC death and this was potentiated by silencing HO-1 expression and reversed by the administration of CO, biliverdin, or bilirubin. In conclusion, this study demonstrates that compound C stimulates HO-1 gene expression in human vascular endothelium via the activation of the Nrf2/ARE signaling pathway to counteract compound C-mediated cell death. The ability of compound C to induce HO-1 expression may contribute to the pleiotropic actions of this agent and suggest caution when using compound C to probe for AMPK functions.


Frontiers in Pharmacology | 2012

Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration

Kelly J. Peyton; Ahmad R. Shebib; Mohammad A. Azam; Xiao-ming Liu; David A. Tulis; William Durante

Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1

Xiao-ming Liu; Kelly J. Peyton; William Durante

Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Single Perivascular Delivery of Mitomycin C Stimulates p21 Expression and Inhibits Neointima Formation in Rat Arteries

Juan F. Granada; Diana Ensenat; Amit N. Keswani; Grzegorz L. Kaluza; Albert E. Raizner; Xiao-ming Liu; Kelly J. Peyton; Mohammed A. Azam; Hong Wang; William Durante

Objective—Mitomycin C (MMc) is an antibiotic that exerts a potent antiproliferative effect in tumor cells. Because the proliferation of vascular smooth muscle cells (VSMCs) plays a prominent role in the development of restenosis after percutaneous coronary interventions, the present study examined the effect of MMc on VSMC proliferation and on neointima formation after arterial balloon injury. Methods and Results—Treatment of cultured rat aortic VSMCs with MMc (1 nmol to 30 &mgr;mol/L) inhibited VSMC proliferation in a concentration-dependent manner. Whereas high concentrations of MMc (1 to 30 &mgr;mol/L) induced VSMC apoptosis, as reflected by DNA laddering and caspase-3 activation, lower concentrations of MMc (1 to 300 nmol/L) directly inhibited VSMC growth by arresting cells in the G2/M phase of the cell cycle. The antiproliferative action of MMc was associated with a selective increase in the expression of the cyclin-dependent kinase inhibitor p21, and with a decrease in cyclin B1-cyclin-dependent kinase-1 complex activity. Finally, the local perivascular delivery of MMc immediately after balloon injury of rat carotid arteries induced p21 expression and markedly attenuated neointima formation. Conclusion—These studies demonstrate that MMc exerts a potent inhibitory effect on VSMC proliferation and neointima formation after arterial injury. MMc represents a potentially new therapeutic agent in treating and preventing vasculoproliferative disease.


Biochemical Pharmacology | 2014

Heme oxygenase-1 counteracts contrast media-induced endothelial cell dysfunction

Chao-Fu Chang; Xiao-ming Liu; Kelly J. Peyton; William Durante

Endothelial cell (EC) dysfunction is involved in the pathogenesis of contrast-induced acute kidney injury, which is a major adverse event following coronary angiography. In this study, we evaluated the effect of contrast media (CM) on human EC proliferation, migration, and inflammation, and determined if heme oxygenase-1 (HO-1) influences the biological actions of CM. We found that three distinct CM, including high-osmolar (diatrizoate), low-osmolar (iopamidol), and iso-osmolar (iodixanol), stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). CM also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the CM-mediated induction of HO-1 and activation of Nrf2 was abolished by acetylcysteine. Finally, CM inhibited the proliferation and migration of ECs and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition or silencing of HO-1 exacerbated the anti-proliferative and inflammatory actions of CM but had no effect on the anti-migratory effect. Thus, induction of HO-1 via the ROS-Nrf2 pathway counteracts the anti-proliferative and inflammatory actions of CM. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing CM-induced endothelial and organ dysfunction.

Collaboration


Dive into the Xiao-ming Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Ensenat

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrew I. Schafer

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Tulis

East Carolina University

View shared research outputs
Researchain Logo
Decentralizing Knowledge