Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Ming Ou is active.

Publication


Featured researches published by Xiao-Ming Ou.


The Journal of Neuroscience | 2003

Impaired Repression at a 5-Hydroxytryptamine 1A Receptor Gene Polymorphism Associated with Major Depression and Suicide

Sylvie Lemonde; Gustavo Turecki; David Bakish; Lisheng Du; Pavel D. Hrdina; Christopher D. Bown; Adolfo Sequeira; Neena Kushwaha; Stephen J. Morris; Ajoy Basak; Xiao-Ming Ou; Paul R. Albert

Inhibition of serotonergic raphe neurons is mediated by somatodendritic 5-HT1A autoreceptors, which may be increased in depressed patients. We report an association of the C(-1019)G 5-HT1A promoter polymorphism with major depression and suicide in separate cohorts. In depressed patients, the homozygous G(-1019) allele was enriched twofold versus controls (p = 0.0017 and 0.0006 for G/G genotype and G allele distribution, respectively), and in completed suicide cases the G(-1019) allele was enriched fourfold (p = 0.002 and 0.00008 for G/G genotype and G allele distribution, respectively). The C(-1019) allele was part of a 26 bp imperfect palindrome that bound transcription factors nuclear NUDR [nuclear deformed epidermal autoregulatory factor (DEAF-1)]/suppressin and Hairy/Enhancer-of-split-5 (Drosophila) (Hes5) to repress 5-HT1A or heterologous promoters, whereas the G(-1019) allele abolished repression by NUDR, but only partially impaired Hes5-mediated repression. Recombinant NUDR bound specifically to the 26 bp palindrome, and endogenous NUDR was present in the major protein-DNA complex from raphe nuclear extracts. Stable expression of NUDR in raphe cells reduced levels of endogenous 5-HT1A protein and binding. NUDR protein was colocalized with 5-HT1A receptors in serotonergic raphe cells, hippocampal and cortical neurons, and adult brain regions including raphe nuclei, indicating a role in regulating 5-HT1A autoreceptor expression. Our data indicate that NUDR is a repressor of the 5-HT1A receptor in raphe cells the function of which is abrogated by a promoter polymorphism. We suggest a novel transcriptional model in which the G(-1019) allele derepresses 5-HT1A autoreceptor expression to reduce serotonergic neurotransmission, predisposing to depression and suicide.


Journal of Biological Chemistry | 2001

Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene.

Xiao-Ming Ou; John M. Storring; Neena Kushwaha; Paul R. Albert

Negative regulation of neuronal serotonin (5-HT1A) receptor levels by glucocorticoids in vivo may contribute to depression. Both types I (mineralocorticoid) and II (glucocorticoid) receptors (MR and GR, respectively) participate in corticosteroid-induced transcriptional repression of the 5-HT1A gene; however, the precise mechanism is unclear. A direct repeat 6-base pair glucocorticoid response element (GRE) half-site 5′-TGTCCT separated by 6 nucleotides was conserved in human, mouse, and rat 5-HT1A receptor promoters. In SN-48 neuronal cells that express MR, GR, and 5-HT1A receptors, deletion or inactivation of the nGRE (negative GRE) eliminated negative regulation of the rat 5-HT1A or heterologous promoters by corticosteroids, whereas its inclusion conferred corticosteroid-induced inhibition to a heterologous promoter. Bacterially expressed recombinant MR and GR preferentially bound to the nGRE as a heterodimer, as identified in nuclear extracts of MR/GR-transfected COS-7 cells, and with higher affinity than MR or GR homodimers. In SN48 and COS-7 cells, concentration-dependent coactivation of MR and GR was required for maximal inhibitory action by corticosteroids and was abrogated in the L501P-GR mutant lacking DNA binding activity. Corticosteroid-mediated transcriptional inhibition was greater for MR/GR in combination than for MR or GR alone. These data represent the first identification of an nMRE/GRE and indicate that heterodimerization of MR and GR mediates direct corticosteroid-induced transrepression of the 5-HT1A receptor promoter.


Journal of Biological Chemistry | 2006

Glucocorticoid and Androgen Activation of Monoamine Oxidase A Is Regulated Differently by R1 and Sp1

Xiao-Ming Ou; Kevin Chen; Jean C. Shih

Monoamine oxidase (MAO) A is a key enzyme for the degradation of neurotransmitters serotonin, norepinephrine, and dopamine. There are three consensus glucocorticoid/androgen response elements and four Sp1-binding sites in the human monoamine oxidase A 2-kb promoter. A novel transcription factor R1 (RAM2/CDCA7L) interacts with Sp1-binding sites and represses MAO A gene expression. Luciferase assays show that glucocorticoid (dexamethasone) and androgen (R1881) increase MAO A promoter and catalytic activities in human neuroblastoma and glioblastoma cells. Gel-shift analysis demonstrates that glucocorticoid/androgen receptors interact directly with the third glucocorticoid/androgen response element. Glucocorticoid/androgen receptors also interact with Sp1-binding sites indirectly via transcription factor Sp1. In addition, dexamethasone induces R1 translocation from the cytosol to the nucleus in a time-dependent manner in both the neuroblastoma and wild-type UW228 cell lines but not in R1 knock-down UW228 cells. In summary, this study shows that glucocorticoid enhances monoamine oxidase A gene expression by 1) regulation of R1 translocation; 2) direct interaction of the glucocorticoid receptor with the third glucocorticoid/androgen response element; and 3) indirect interaction of glucocorticoid receptor with the Sp1 or R1 transcription factor on Sp1-binding sites of the MAO A promoter. Androgen also up-regulates MAO A gene expression by direct interaction of androgen receptor with the third glucocorticoid/androgen response element. Androgen receptor indirectly interacts with the Sp1, but not R1 transcription factor, on Sp1-binding sites. This study provides new insights on the differential regulation of MAO A by glucocorticoid and androgen.


Neuropsychopharmacology | 2011

The reduction of R1, a novel repressor protein for monoamine oxidase A, in major depressive disorder.

Shakevia Johnson; Craig A. Stockmeier; Jeffrey H. Meyer; Mark C. Austin; Paul R. Albert; Junming Wang; Warren L. May; Grazyna Rajkowska; James C. Overholser; George Jurjus; Lesa Dieter; Chandra Johnson; Donald B. Sittman; Xiao-Ming Ou

The novel transcriptional repressor protein, R1 (JPO2/CDCA7L/RAM2), inhibits monoamine oxidase A (MAO A) gene expression and influences cell proliferation and survival. MAO A is implicated in several neuropsychiatric illnesses and highly elevated in major depressive disorder (MDD); however, whether R1 is involved in these disorders is unknown. This study evaluates the role of R1 in depressed subjects either untreated or treated with antidepressant drugs. R1 protein levels were determined in the postmortem prefrontal cortex of 18 untreated MDD subjects and 12 medicated MDD subjects compared with 18 matched psychiatrically normal control subjects. Western blot analysis showed that R1 was significantly decreased by 37.5% (p<0.005) in untreated MDD subjects. The R1 level in medicated MDD subjects was also significantly lower (by 30%; p<0.05) compared with control subjects, but was not significantly different compared with untreated MDD subjects. Interestingly, the reduction in R1 was significantly correlated with an increase (approximately 40%; p<0.05) in MAO A protein levels within the MDD groups compared with controls. Consistent with the change in MAO A protein expression, the MAO A catalytic activity was significantly greater in both MDD groups compared with controls. These results suggest that reduced R1 may lead to elevated MAO A levels in untreated and treated MDD subjects; moreover, the reduction of R1 has been implicated in apoptotic cell death and apoptosis has also been observed in the brains of MDD subjects. Therefore, modulation of R1 levels may provide a new therapeutic target in the development of more effective strategies to treat MDD.


Journal of Biological Chemistry | 2007

Differential repression by freud-1/CC2D1A at a polymorphic site in the dopamine-D2 receptor gene.

Anastasia Rogaeva; Xiao-Ming Ou; Hamed Jafar-Nejad; Sylvie Lemonde; Paul R. Albert

Freud-1/CC2D1A is a transcriptional repressor of the serotonin-1A receptor gene and was recently genetically linked to non-syndromic mental retardation. To identify new Freud-1 gene targets, data base mining for Freud-1 recognition sequences was done. A highly homologous intronic element (D2-DRE) was identified in the human dopamine-D2 receptor (DRD2) gene, and the role of Freud-1 in regulating the gene at this site was assessed. Recombinant Freud-1 bound specifically to the D2-DRE, and a major protein-D2-DRE complex was identified in nuclear extracts that was supershifted using Freud-1-specific antibodies. Endogenous Freud-1 binding to the D2-DRE in cells was detected using chromatin immunoprecipitation. The D2-DRE conferred strong repressor activity in transcriptional reporter assays that was dependent on the Freud-1 recognition sequence. In three different human cell lines, the level of Freud-1 protein was inversely related to DRD2 expression. Knockdown of endogenous Freud-1 using small interfering RNA resulted in an up-regulation of DRD2 RNA and binding sites, demonstrating a crucial role for Freud-1 in DRD2 regulation. A previously uncharacterized single nucleotide A/G polymorphism (rs2734836) was located adjacent to the D2-DRE and conferred allele-specific Freud-1 binding and repression, with the major G-allele having reduced activity. These studies demonstrate a key role for Freud-1 to regulate DRD2 expression and provide the first mechanistic insights into its transcriptional regulation. Allele-specific regulation of DRD2 expression by Freud-1 may possibly associate with psychiatric disorders or mental retardation.


Neuropsychopharmacology | 2014

Elevated Monoamine Oxidase A Binding During Major Depressive Episodes Is Associated with Greater Severity and Reversed Neurovegetative Symptoms

Lina Chiuccariello; Sylvain Houle; Laura Miler; Robert G. Cooke; Pablo Rusjan; Grazyna Rajkowska; Robert D. Levitan; Stephen J. Kish; Nathan J. Kolla; Xiao-Ming Ou; Alan A. Wilson; Jeffrey H. Meyer

Inadequate treatment response occurs in approximately 40% of major depressive episodes (MDEs), and one approach to solve this is careful matching of treatment to the specific pathologies of MDE. One such biological abnormality is elevated monoamine oxidase A (MAO-A) levels, which occurs in the prefrontal and anterior cingulate cortex (PFC and ACC) during MDE; however, the subtypes for which this abnormality is most prominent are unknown. We hypothesized that MAO-A levels in the PFC and ACC are most elevated in MDE with greater severity and reversed neurovegetative symptoms (hypersomnia and either hyperphagia or weight gain). MAO-A VT (an index of MAO-A density) was measured using [11C]harmine positron emission tomography (PET) in 42 subjects with MDEs secondary to major depressive disorder and 37 healthy controls. The effect of severity and reversed neurovegetative symptoms on MAO-A VT in the PFC and ACC was analyzed using a multivariate analysis of variance (MANOVA). Greater severity and reversed neurovegetative symptoms were associated with elevated MAO-A VT in the PFC and ACC (MANOVA, severity: F(2,38)=5.44, p=0.008; reversed neurovegetative symptoms: F(2,38)=5.13, p=0.01). Increased MAO-A level, when greater severity and reversed neurovegetative symptoms are present, may explain the association of these clinical features with a preferential response to MAO inhibitors, which is especially well-evidenced for reversed neurovegetative symptoms in MDE. As MAO-A creates oxidative stress, facilitates apoptosis, and metabolizes monoamines, therapeutics opposing these processes are predicted to best treat MDE with greater severity and reversed neurovegetative symptoms.


PLOS ONE | 2012

Allopregnanolone Reinstates Tyrosine Hydroxylase Immunoreactive Neurons and Motor Performance in an MPTP-Lesioned Mouse Model of Parkinson's Disease

Samuel O. Adeosun; Xu Hou; Yun Jiao; Baoying Zheng; Sherry Henry; Rosanne Hill; Zhi He; Amar K. Pani; Patrick B. Kyle; Xiao-Ming Ou; Thomas H. Mosley; Jerry M. Farley; Craig A. Stockmeier; Ian A. Paul; Steven Bigler; Roberta Diaz Brinton; Richard J. Smeyne; Jun Ming Wang

Restorative/protective therapies to restore dopamine neurons in the substantia nigra pars compacta (SNpc) are greatly needed to effectively change the debilitating course of Parkinsons disease. In this study, we tested the therapeutic potential of a neurogenic neurosteroid, allopregnanolone, in the restoration of the components of the nigrostriatal pathway in MPTP-lesioned mice by measuring striatal dopamine levels, total and tyrosine hydroxylase immunoreactive neuron numbers and BrdU-positive cells in the SNpc. An acute treatment (once/week for two weeks) with allopregnanolone restored the number of tyrosine hydroxylase-positive and total cell numbers in the SNpc of MPTP-lesioned mice, even though this did not increase striatal dopamine. It was also noted that MPTP treated mice to which allopregnanolone was administered had an increase in BrdU-positive cells in the SNpc. The effects of allopregnanolone in MPTP-lesioned mice were more apparent in mice that underwent behavioral tests. Interestingly, mice treated with allopregnanolone after MPTP lesion were able to perform at levels similar to that of non-lesioned control mice in a rotarod test. These data demonstrate that allopregnanolone promotes the restoration of tyrosine hydroxylase immunoreactive neurons and total cells in the nigrostriatal tract, improves the motor performance in MPTP-treated mice, and may serve as a therapeutic strategy for Parkinsons disease.


Journal of Biological Chemistry | 2009

Retinoic Acid Activates Monoamine Oxidase B Promoter in Human Neuronal Cells

Jason Boyang Wu; Kevin Chen; Xiao-Ming Ou; Jean C. Shih

Monoamine oxidase (MAO) B deaminates a number of biogenic and dietary amines and plays an important role in many biological processes. Among hormonal regulations of MAO B, we have recently found that retinoic acid (RA) significantly activates both MAO B promoter activity and mRNA expression in a human neuroblastoma BE(2)C cell line. RA activates MAO B promoter in both concentration- and time-dependent manners, which is mediated through retinoic acid receptor α (RARα) and retinoid X receptor α (RXRα). There are four retinoic acid response elements (RAREs) as identified in the MAO B 2-kb promoter, and mutation of the third RARE reduced RA-induced MAO B promoter activation by 50%, suggesting this element is important. Electrophoretic mobility shift analysis and chromatin immunoprecipitation assay demonstrated that RARα specifically binds to the third RARE both in vitro and in vivo. Moreover, transient transfection and luciferase assays revealed that Sp1 enhances but not essentially required for the RA activation of MAO B through two clusters of Sp1-binding sites in the MAO B promoter. RARα physically interacts with Sp1 via zinc finger domains in Sp1 as determined by co-immunoprecipitation assay. Further, RARα was shown to be recruited by Sp1 and to form a transcriptional regulation complex with Sp1 in the Sp1-binding sites of natural MAO B promoter. Taken together, this study provides evidence for the first time showing the stimulating effect of RA on MAO B and new insight into the molecular mechanisms of MAO B regulation by hormones.


PLOS ONE | 2012

A dominant negative ERβ splice variant determines the effectiveness of early or late estrogen therapy after ovariectomy in rats.

Jun Ming Wang; Xu Hou; Samuel O. Adeosun; Rosanne Hill; Sherry Henry; Ian A. Paul; Ronald W. Irwin; Xiao-Ming Ou; Steven Bigler; Craig A. Stockmeier; Roberta Diaz Brinton; Elise P. Gomez-Sanchez

The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain.


Molecular Pharmacology | 2011

Transcription Factor E2F-Associated Phosphoprotein (EAPP), RAM2/CDCA7L/JPO2 (R1), and Simian Virus 40 Promoter Factor 1 (Sp1) Cooperatively Regulate Glucocorticoid Activation of Monoamine Oxidase B

Kevin Chen; Xiao-Ming Ou; Jason Boyang Wu; Jean C. Shih

Glucocorticoid steroid hormones play important roles in many neurophysiological processes such as responses to stress, behavioral adaption, and mood. One mechanism by which glucocorticoids exert functions in the brain is via the modulation of neurotransmission systems. Glucocorticoids are capable of inducing the activities of monoamine oxidases (MAOs), which degrade monoamine neurotransmitters including serotonin, norepinephrine, phenylethylamine, and dopamine. However, the molecular mechanisms for such induction are not yet fully understood. Here, we report that dexamethasone, a synthetic glucocorticoid hormone, stimulates MAO B (an isoform of MAOs) promoter and catalytic activities via both the fourth glucocorticoid response element (GRE) and simian virus 40 promoter factor 1 (Sp1) binding sites in MAO B promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation analysis demonstrated that glucocorticoid receptor binds to the fourth GRE in vitro and in vivo. Using Sp1-binding motifs as bait in a yeast one-hybrid system, we identified two novel transcriptional repressors of MAO B, E2F-associated phosphoprotein (EAPP) and R1 (RAM2/CDCA7L/JPO2), that down-regulate MAO B via MAO B core promoter, which contains Sp1 sites. EMSA suggested that EAPP and R1 competed with Sp1 for binding to the Sp1 site in vitro. Moreover, EAPP and R1 reduced Sp1-activated glucocorticoid activation of MAO B promoter. In response to dexamethasone, lower occupancy by EAPP and R1 and higher occupancy by Sp1 were shown at the natural MAO B core promoter. Together, this study uncovers for the first time the molecular mechanisms for glucocorticoid activation of MAO B gene and provides new insights into the hormonal regulation of MAO.

Collaboration


Dive into the Xiao-Ming Ou's collaboration.

Top Co-Authors

Avatar

Craig A. Stockmeier

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paul R. Albert

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jean C. Shih

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kevin Chen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Shakevia Johnson

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Grazyna Rajkowska

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jun Ming Wang

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chandra Johnson

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Donald B. Sittman

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ian A. Paul

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge