Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Ming Xu is active.

Publication


Featured researches published by Xiao-Ming Xu.


Marine Pollution Bulletin | 2014

Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China

Mao-Cheng Deng; Jing Li; Fu-Rui Liang; Meisheng Yi; Xiao-Ming Xu; Jian-Ping Yuan; Juan Peng; Chou-Fei Wu; Jiang-Hai Wang

Microorganisms play an important role in the biodegradation of petroleum contaminants, which have attracted great concern due to their persistent toxicity and difficult biodegradation. In this paper, a novel hydrocarbon-degrading bacterium HZ01 was isolated from the crude oil-contaminated seawater at the Daya Bay, South China Sea, and identified as Achromobacter sp. Under the conditions of pH 7.0, NaCl 3% (w/v), temperature 28 °C and rotary speed 150 rpm, its degradability of the total n-alkanes reached up to 96.6% after 10 days of incubation for the evaporated diesel oil. Furthermore, Achromobacter sp. HZ01 could effectively utilize polycyclic aromatic hydrocarbons (PAHs) as its sole carbon source, and could remove anthracene, phenanthrene and pyrence about 29.8%, 50.6% and 38.4% respectively after 30 days of incubation. Therefore, Achromobacter sp. HZ01 may employed as an excellent degrader to develop one cost-effective and eco-friendly method for the bioremediation of marine environments polluted by crude oil.


Journal of Applied Microbiology | 2016

Characterization of a novel biosurfactant produced by marine hydrocarbon-degrading bacterium Achromobacter sp. HZ01.

Mao-Cheng Deng; Junhua Li; Yue-Hui Hong; Xiao-Ming Xu; W.-X. Chen; Jian-Ping Yuan; Juan Peng; M. Yi; Jiang-Hai Wang

To purify and characterize the biosurfactants produced by Achromobacter sp. HZ01.


PLOS ONE | 2015

Morphological Observations and Fatty Acid Composition of Indoor-Cultivated Cordyceps sinensis at a High-Altitude Laboratory on Sejila Mountain, Tibet

Lian-Xian Guo; Xiao-Ming Xu; Fu-Rui Liang; Jian-Ping Yuan; Juan Peng; Chou-Fei Wu; Jiang-Hai Wang

Cordyceps sinensis, a caterpillar entomopathogenic fungus-host larva complex, is a rare medicinal herb found in the Qinghai-Tibetan Plateau and its surrounding high-altitude areas. The alternation of generations in the life cycle, whatever the fungus or its host insect, requires special growth conditions. However, it is difficult to simulate the growth conditions of C. sinensis, which hinders its artificial cultivation. In this work, the life cycle from the host larva to C. sinensis was observed in an indoor-cultivation laboratory at 4,200 m a.s.l. on Sejila Mountain, Tibet. Comparative examinations between indoor-cultivated and wild C. sinensis demonstrated that the indoor-cultivated C. sinensis preferred to germinate multiple long, slim stromata at diverse positions on dead larvae, including but not limited to their heads. Their fatty acid composition shows a significant difference in the levels of polyunsaturated fatty acids (PUFAs). In indoor-cultivated C. sinensis, PUFAs constituted 24.59% and 49.43%, respectively, of neutral and polar lipids; meanwhile, in wild C. sinensis, PUFAs represented 34.34% and 61.25% of neutral and polar lipids, respectively. These observations and fatty acid data suggest that environmental factors, particularly temperature, soil pressure and light intensity, strongly affect the growth of C. sinensis. Our new findings may provide important information for improving techniques for the large-scale artificial cultivation of C. sinensis.


Geomicrobiology Journal | 2014

Responses of Microbial Communities to Light-Hydrocarbon Microseepage and Novel Indicators for Microbial Prospecting of Oil/Gas in the Beihanzhuang Oilfield, Northern Jiangsu, China

Xiao-Ying Wu; Xiao-Ming Xu; Chou-Fei Wu; Shao-Ying Fu; Mao-Cheng Deng; Lei Feng; Jian-Ping Yuan; Jiang-Hai Wang

Previous studies on microbial prospecting of oil/gas only focused on the anomalies of light hydrocarbon-oxidizing microbes as main exploratory indicators and their exploration applications. In this study, we investigated the responses of microbial communities to light-hydrocarbon microseepage in the Beihanzhuang Oilfield, eastern China using denaturing gradient gel electrophoresis (DGGE) analysis and by comparing the difference of two-type areas with high- and low-flux light-hydrocarbon seepages. The results showed that the high-flux light-hydrocarbon seepage favored the growth of Nocardioides, Aciditerrimonas, sulphate-reducing bacteria (SRBs) related to Desulfosporosinus and Desulfovibrio, and Chloroflexi bacteria (b-7), implying that their anomalies might be adopted as novel subsidiary indicators for microbial prospecting of oil/gas in the Beihanzhuang Oilfield. Based on the newly obtained results, we have proposed a general strategy for microbial prospecting of oil/gas, i.e., to determine the anomalies of light hydrocarbon-oxidizing microbes, to select subsidiary indicators for microbial prospecting of oil/gas based on an assessment of the responses of microbial communities to light-hydrocarbon microseepage, to quantitatively measure subsidiary indicators and delimit their anomalies, to comprehensively interpret all microbial anomalies, and to make a suggestion for oil/gas prospecting. This general strategy with novel indicators may provide a more comprehensive evaluation for light-hydrocarbon microseepage and the corresponding anomalies, thereby reducing the exploration risk of oil/gas.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2012

An efficient fermentation method for the degradation of cyanogenic glycosides in flaxseed

Chou-Fei Wu; Xiao-Ming Xu; S.-H. Huang; Mao-Cheng Deng; A.-J. Feng; Juan Peng; Jian-Ping Yuan; Jiang-Hai Wang

Recently, flaxseed has become increasingly popular in the health food market because it contains a considerable amount of specific beneficial nutrients such as lignans and omega-3 fatty acids. However, the presence of cyanogenic glycosides (CGs) in flaxseed severely limits the exploitation of its health benefits and nutritive value. We, therefore, developed an effective fermentation method, optimised by response surface methodology (RSM), for degrading CGs with an enzymatic preparation that includes 12.5% β-glucosidase and 8.9% cyanide hydratase. These optimised conditions resulted in a maximum CG degradation level of 99.3%, reducing the concentration of cyanide in the flaxseed power from 1.156 to 0.015 mg g−1 after 48 h of fermentation. The avoidance of steam heat to evaporate hydrocyanic acid (HCN) results in lower energy consumption and no environmental pollution. In addition, the detoxified flaxseed retained the beneficial nutrients, lignans and fatty acids at the same level as untreated flaxseed, and this method could provide a new means of removing CGs from other edible plants, such as cassava, almond and sorghum by simultaneously expressing cyanide hydratase and β-glucosidase.


Journal of Oceanology and Limnology | 2018

Centennial-scale records of total organic carbon in sediment cores from the South Yellow Sea, China

Qing Zhu; Jia Lin (林佳); Yue-Hui Hong; Lirong Yuan (袁丽蓉); Jinzhong Liu (刘金钟); Xiao-Ming Xu; Jiang-Hai Wang

Global carbon cycling is a significant factor that controls climate change. The centennial-scale variations in total organic carbon (TOC) contents and its sources in marginal sea sediments may reflect the influence of human activities on global climate change. In this study, two fine-grained sediment cores from the Yellow Sea Cold Water Mass of the South Yellow Sea were used to systematically determine TOC contents and stable carbon isotope ratios. These results were combined with previous data of black carbon and 210Pb dating from which we reconstructed the centennial-scale initial sequences of TOC, terrigenous TOC (TOCter) and marine autogenous TOC (TOCmar) after selecting suitable models to correct the measured TOC (TOCcor). These sequences showed that the TOCter decreased with time in the both cores while the TOCmar increased, particularly the rapid growth in core H43 since the late 1960s. According to the correlation between the Huanghe (Yellow) River discharge and the TOCcor, TOCter, or TOCmar, we found that the TOCter in the two cores mainly derived from the Huanghe River and was transported by it, and that higher Huanghe River discharge could strengthen the decomposition of TOCmar. The newly obtained initial TOC sequences provide important insights into the interaction between human activities and natural processes.


Chinese Journal of Oceanology and Limnology | 2018

Rates and fluxes of centennial-scale carbon storage in the fine-grained sediments from the central South Yellow Sea and Min-Zhe belt, East China Sea

Jiang-Hai Wang; Xi Xiao; Qian-Zhi Zhou; Xiao-Ming Xu; Chenxi Zhang (张晨曦); Jinzhong Liu (刘金钟); Dongliang Yuan

The global carbon cycle has played a key role in mitigating global warming and climate change. Long-term natural and anthropogenic processes influence the composition, sources, burial rates, and fluxes of carbon in sediments on the continental shelf of China. In this study, the rates, fluxes, and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area (SYSA) and Min-Zhe belt (MZB), East China Sea. Based on the high-resolution temporal sequences of total carbon (TC) and total organic carbon (TOC) contents, we reconstructed the annual variations of historical marine carbon storage, and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale. The estimated TC storage over 100 years was 1.18×108 t in the SYSA and 1.45×109 t in the MZB. The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km2·a)in the SYSA and from 56 to 148 t/(km2·a) in the MZB. The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source. In the MZB, two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006, which were coeval with the water impoundment in the Gezhouba and Three Gorges dams, respectively. The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.


Chinese Journal of Oceanology and Limnology | 2018

Synchronous response of sedimentary organic carbon accumulation on the inner shelf of the East China Sea to the water impoundment of Three Gorges and Gezhouba Dams

Jia Lin (林佳); Qing Zhu; Yue-Hui Hong; Lirong Yuan (袁丽蓉); Jinzhong Liu (刘金钟); Xiao-Ming Xu; Jiang-Hai Wang

Coastal seas, located between continents and the open ocean, are an important active carbon pool. The sedimentary total organic carbon (TOC) in these areas is a mixture of terrestrial and marine sources, and can be a powerful proxy for tracing natural processes and human activities. In this study, one fine-grained sediment core (DH5-1) from the inner shelf of the East China Sea was systematically analyzed for TOC and black carbon (BC) contents and TOC stable carbon isotope ratios (δ13C). By combining these data with 210Pb dating, an improved carbon correction model and a two end-member mixing model, we reconstructed century-scale high-resolution sequences of corrected TOC, terrestrial TOC and marine TOC contents and identified two carbon depletion events in the DH5-1 record. The two events, shown as two minima in the TOC profiles, correspond temporally to 1985-1987 AD and 2003-2006 AD, which exactly matches the water impoundment of the Gezhouba Dam and Three Gorges Dam, respectively. In addition, the variations in TOC contents and δ13C values before, during or after the minima demonstrate a relationship between the depletion events and water impoundment of the dams on the Changjiang River. The TOC reductions may represent synchronous responses of sedimentary TOC and resultant ecological effects on the inner shelf of the East China Sea to the water impoundment of the dams. These new TOC records reflect the interaction between natural and anthropogenic processes and, accordingly, provide a deep insight and important references for assessing marine ecological effects resulting from water impoundment of largescale dams.


Scientific Reports | 2017

Fungus-larva relation in the formation of Cordyceps sinensis as revealed by stable carbon isotope analysis

Lian-Xian Guo; Yue-Hui Hong; Qian-Zhi Zhou; Qing Zhu; Xiao-Ming Xu; Jiang-Hai Wang

For more than one thousand years, Cordyceps sinensis has been revered as a unique halidom in the Qinghai-Tibetan Plateau for its mysterious life history and predominant medicinal values. This mysterious fungus-larva symbiote also attracted the over-exploitation, while several problems on the initial colonization of Ophiocordyceps sinensis in the host larva have constrained artificial cultivation. In this work, stable carbon isotope analysis was employed to analyse the subsamples of C. sinensis from 5 representative habitats. The results demonstrated that these samples possessed similar δ13C profiles, i.e., a steady ascending trend from the top to the bottom of stroma, occurrence of the δ13C maximum at the head, a slight decrease from the head to the end of thorax, a sharply descent trend from the end of thorax to the forepart of abdomen, and maintenance of lower δ13C values in the rest parts of abdomen. Based on the data, we consider that the site near the head of the host larva may be the initial target attacked by O. sinensis, and the fungus growth is closely related to the digestive tract of its host larva. The growth stages of O. sinensis are accordingly speculated as the symptom-free, symptom-appearing, and stroma-germinating stages.


Gene | 2016

Characterization of the transcriptome of Achromobacter sp. HZ01 with the outstanding hydrocarbon-degrading ability.

Yue-Hui Hong; Mao-Cheng Deng; Xiao-Ming Xu; Chou-Fei Wu; Xi Xiao; Qing Zhu; Xian-Xian Sun; Qian-Zhi Zhou; Juan Peng; Jian-Ping Yuan; Jiang-Hai Wang

Microbial remediation has become one of the most important strategies for eliminating petroleum pollutants. Revealing the transcript maps of microorganisms with the hydrocarbon-degrading ability contributes to enhance the degradation of hydrocarbons and further improve the effectiveness of bioremediation. In this study, we characterized the transcriptome of hydrocarbon-degrading Achromobacter sp. HZ01 after petroleum treatment for 16h. A total of 38,706,280 and 38,954,413 clean reads were obtained by RNA-seq for the petroleum-treated group and control, respectively. By an effective de novo assembly, 3597 unigenes were obtained, including 3485 annotated transcripts. Petroleum treatment had significantly influenced the transcriptional profile of strain HZ01, involving 742 differentially expressed genes. A part of genes were activated to exert specific physiological functions, whereas more genes were down-regulated including specific genes related to cell motility, genes associated with glycometabolism, and genes coding for ribosomal proteins. Identification of genes related to petroleum degradation revealed that the fatty acid metabolic pathway and a part of monooxygenases and dehydrogenases were activated, whereas the TCA cycle was inactive. Additionally, terminal oxidation might be a major aerobic pathway for the degradation of n-alkanes in strain HZ01. The newly obtained data contribute to better understand the gene expression profiles of hydrocarbon-degrading microorganisms after petroleum treatment, to further investigate the genetic characteristics of strain HZ01 and other related species and to develop cost-effective and eco-friendly strategies for remediation of crude oil-polluted environments.

Collaboration


Dive into the Xiao-Ming Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chou-Fei Wu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Juan Peng

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Zhu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge