Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Nan Li is active.

Publication


Featured researches published by Xiao-Nan Li.


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Nature Medicine | 2015

Functionally defined therapeutic targets in diffuse intrinsic pontine glioma

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi–histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.


Molecular Cancer Therapeutics | 2005

Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC

Xiao-Nan Li; Qin Shu; Jack Men-Feng Su; Laszlo Perlaky; Susan M. Blaney; Ching C. Lau

Valproic acid is a well-tolerated anticonvulsant that has been identified recently as a histone deacetylase inhibitor. To evaluate the antitumor efficacy and mechanisms of action of valproic acid in medulloblastoma and supratentorial primitive neuroectodermal tumor (sPNET), which are among the most common malignant brain tumors in children with poor prognosis, two medulloblastoma (DAOY and D283-MED) and one sPNET (PFSK) cell lines were treated with valproic acid and evaluated with a panel of in vitro and in vivo assays. Our results showed that valproic acid, at clinically safe concentrations (0.6 and 1 mmol/L), induced potent growth inhibition, cell cycle arrest, apoptosis, senescence, and differentiation and suppressed colony-forming efficiency and tumorigenicity in a time- and dose-dependent manner. The medulloblastoma cell lines were more responsive than the sPNET cell line and can be induced to irreversible suppression of proliferation and significantly reduced tumorigenicity by 0.6 and 1 mmol/L valproic acid. Daily i.p. injection of valproic acid (400 mg/kg) for 28 days significantly inhibited the in vivo growth of DAOY and D283-MED s.c. xenografts in severe combined immunodeficient mice. With Western hybridization and real-time reverse transcription-PCR, we further showed that the antitumor activities of valproic acid correlated with induction of histone (H3 and H4) hyperacetylation, activation of p21, and suppression of TP53, CDK4, and CMYC expression. In conclusion, valproic acid possesses potent in vitro and in vivo antimedulloblastoma activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, valproic acid may represent a novel therapeutic option in medulloblastoma treatment. [Mol Cancer Ther 2005;4(12):1912–22]


Proceedings of the National Academy of Sciences of the United States of America | 2008

Overexpression of Separase induces aneuploidy and mammary tumorigenesis

Nenggang Zhang; Gouquing Ge; Rene Meyer; Sumita Sethi; Dipanjan Basu; Subhashree Pradhan; Yi Jue Zhao; Xiao-Nan Li; Wei Wen Cai; Adel K. El-Naggar; Veerabhadran Baladandayuthapani; Frances S. Kittrell; Pulivarthi H. Rao; Daniel Medina; Debananda Pati

Separase is an endopeptidase that separates sister chromatids by cleaving cohesin Rad21 during the metaphase-to-anaphase transition. Conditional expression of Separase in tetracycline-inducible diploid FSK3 mouse mammary epithelial cells with both p53 WT and mutant (Ser-233-234) alleles of unknown physiological significance develops aneuploidy within 5 days of Separase induction in vitro. Overexpression of Separase induces premature separation of chromatids, lagging chromosomes, and anaphase bridges. In an in vivo mouse mammary transplant model, induction of Separase expression in the transplanted FSK3 cells for 3–4 weeks results in the formation of aneuploid tumors in the mammary gland. Xenograft studies combined with histological and cytogenetic analysis reveal that Separase-induced tumors are clonal in their genomic complements and have a mesenchymal phenotype suggestive of an epithelial–mesenchymal transition. Induction of Separase resulted in trisomies for chromosomes 8, 15, and 17; monosomy for chromosome 10; and amplification of the distal region of chromosomes 8 and 11. Separase protein is found to be significantly overexpressed in human breast tumors compared with matched normal tissue. These results collectively suggest that Separase is an oncogene, whose overexpression alone in mammary epithelial cells is sufficient to induce aneuploidy and tumorigenesis in a p53 mutant background.


Stem Cells | 2008

Direct Orthotopic Transplantation of Fresh Surgical Specimen Preserves CD133+ Tumor Cells in Clinically Relevant Mouse Models of Medulloblastoma and Glioma

Qin Shu; Kwong Kwok Wong; Jack Su; Adekunle M. Adesina; Li Tian Yu; Yvonne T.M. Tsang; Barbara C. Antalffy; Patricia Baxter; Laszlo Perlaky; Jianhua H. Yang; Robert C. Dauser; Murali Chintagumpala; Susan M. Blaney; Ching C. Lau; Xiao-Nan Li

Recent identification of cancer stem cells in medulloblastoma (MB) and high‐grade glioma has stimulated an urgent need for animal models that will not only replicate the biology of these tumors, but also preserve their cancer stem cell pool. We hypothesize that direct injection of fresh surgical specimen of MB and high‐grade glioma tissues into anatomically equivalent locations in immune‐deficient mouse brains will facilitate the formation of clinically accurate xenograft tumors by allowing brain tumor stem cells, together with their non‐stem tumor and stromal cells, to grow in a microenvironment that is the closest to human brains. Eight of the 14 MBs (57.1%) and two of the three high‐grade gliomas (66.7%) in this study developed transplantable (up to 12 passages) xenografts in mouse cerebellum and cerebrum, respectively. These xenografts are patient specific, replicating the histopathologic, immunophenotypic, invasive/metastatic, and major genetic (analyzed with 10K single nucleotide polymorphism array) abnormalities of the original tumors. The xenograft tumor cells have also been successfully cryopreserved for long‐term preservation of tumorigenicity, ensuring a sustained supply of the animal models. More importantly, the CD133+ tumor cells, ranging from 0.2%–10.4%, were preserved in all the xenograft models following repeated orthotopic subtransplantations in vivo. The isolated CD133+ tumor cells formed neurospheres and displayed multi‐lineage differentiation capabilities in vitro. In summary, our study demonstrates that direct orthotopic transplantation of fresh primary tumor cells is a powerful approach in developing novel clinical relevant animal models that can reliably preserve CD133+ tumor cell pools even during serial in vivo subtransplantations.


Journal of Experimental Medicine | 2014

USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase

Yihui Fan; Renfang Mao; Yang Yu; Shangfeng Liu; Zhongcheng Shi; Jin Cheng; Huiyuan Zhang; Lei An; Yanling Zhao; Xin Xu; Zhenghu Chen; Mari Kogiso; Dekai Zhang; Hong Zhang; Pumin Zhang; Jae U. Jung; Xiao-Nan Li; Guo-Tong Xu; Jianhua Yang

The deubiquitinase USP21 targets RIG-I for deubiquitination, thus dampening interferon production and activation of IFN-responsive genes in response to RNA viruses.


Molecular Cancer Research | 2008

Cell Cycle Regulator Gene CDC5L, a Potential Target for 6p12-p21 Amplicon in Osteosarcoma

Xin Yan Lu; Yaojuan Lu; Yi Jue Zhao; Kim Jaeweon; Jason Kang; Xiao-Nan Li; Gouqing Ge; Rene Meyer; Laszlo Perlaky; John Hicks; Murali Chintagumpala; Wei Wen Cai; Marc Ladanyi; Richard Gorlick; Ching C. Lau; Debananda Pati; Michael Sheldon; Pulivarthi H. Rao

Osteosarcoma is a primary malignant tumor of bone arising from primitive bone-forming mesenchymal cells and accounts for ∼60% of malignant bone tumors. Our comparative genomic hybridization (CGH) studies have identified frequent amplification at 6p12-p21, 12q13-q15, and 17p11.2 in osteosarcoma. Of these amplified regions, 6p12-p21 is particularly interesting because of its association with progression and poor prognosis in patients with osteosarcoma. In an attempt to identify aberrantly expressed gene(s) mapping to the 6p12-p21 amplicon, a region-specific array was generated using 108 overlapping BAC and P1 clones covering a 28.8-Mb region at 0.26-Mb intervals. Based on array CGH analysis, the 6p amplicon was refined to 7.9 Mb between the clones RP11-91E11 and RP1-244F2 and 10 amplified clones, with possible target genes, were identified. To study the expression pattern of the target genes from the hotspot amplicon and known candidate genes from 6p12-21, we did quantitative reverse transcription-PCR analysis of MAPK14, MAPK13, CDKN1A, PIM1, MDGA1, BTB9, DNAH8, CCND3, PTK7, CDC5L, and RUNX2 on osteosarcoma patient samples and seven cell lines. The combined array CGH and quantitative reverse transcription-PCR analysis identified amplification and overexpression of CDC5L, CCND3, and RUNX2. We screened these three genes for protein expression by Western blotting and immunohistochemistry and detected overexpression of CDC5L. Furthermore, we used an in vivo assay to show that CDC5L possesses potential oncogenic activity. These results indicate that CDC5L, a cell cycle regulator important for the G2-M transition, is the most likely candidate oncogene for the 6p12-p21 amplicon found in osteosarcoma. (Mol Cancer Res 2008;6(6):937–46)


Stem Cells | 2013

Effective elimination of cancer stem cells by a novel drug combination strategy

Shuqiang Yuan; Feng Wang; Gang Chen; Hui Zhang; Li Feng; Lei Wang; Howard Colman; Michael J. Keating; Xiao-Nan Li; Rui Hua Xu; Jianping Wang; Peng Huang

Development of effective therapeutic strategies to eliminate cancer stem cells, which play a major role in drug resistance and disease recurrence, is critical to improve cancer treatment outcomes. Our study showed that glioblastoma stem cells (GSCs) exhibited low mitochondrial respiration and high glycolytic activity. These GSCs were highly resistant to standard drugs such as carmustine and temozolomide (TMZ), but showed high sensitivity to a glycolytic inhibitor 3‐bromo‐2‐oxopropionate‐1‐propyl ester (3‐BrOP), especially under hypoxic conditions. We further showed that combination of 3‐BrOP with carmustine but not with TMZ achieved a striking synergistic effect and effectively killed GSCs through a rapid depletion of cellular ATP and inhibition of carmustine‐induced DNA repair. This drug combination significantly impaired the sphere‐forming ability of GSCs in vitro and tumor formation in vivo, leading to increase in the overall survival of mice bearing orthotopic inoculation of GSCs. Further mechanistic study showed that 3‐BrOP and carmustine inhibited glyceraldehyde‐3‐phosphate dehydrogenase and caused a severe energy crisis in GSCs. Our study suggests that GSCs are highly glycolytic and that certain drug combination strategies can be used to effectively overcome their drug resistance based on their metabolic properties. STEM Cells2013;31:23–34


Clinical Cancer Research | 2011

Phase 1 Study of Valproic Acid in Pediatric Patients with Refractory Solid or CNS Tumors: A Children's Oncology Group Report

Jack Su; Xiao-Nan Li; Patrick A. Thompson; Ching Nan Ou; Ashish M. Ingle; Heidi V. Russell; Ching C. Lau; Peter C. Adamson; Susan M. Blaney

Purpose: The primary purpose of this trial was to define and describe the toxicities of oral valproic acid (VPA) at doses required to maintain trough concentrations of 100 to 150 mcg/mL or 150 to 200 mcg/mL in children with refractory solid or central nervous system (CNS) tumors. Secondary objectives included assessment of free and total VPA pharmacokinetics (PKs) and histone acetylation in peripheral blood mononuclear cells (PBMC) at steady state. Patients and Methods: Oral VPA, initially administered twice daily and subsequently three times daily, was continued without interruption to maintain trough concentrations of 100 to 150 mcg/mL. First-dose and steady-state PKs were studied. Histone H3 and H4 acetylation in PBMCs was evaluated using an ELISA technique. Results: Twenty-six children, sixteen of whom were evaluable for toxicity, were enrolled. Dose-limiting somnolence and intratumoral hemorrhage were associated with VPA troughs of 100 to 150 mcg/mL. Therefore, the final cohort of six children received VPA to maintain troughs of 75 to 100 mcg/mL and did not experience any dose-limiting toxicity. First-dose and steady-state VPA PK parameters were similar to values previously reported in children with seizures. Increased PBMC histone acetylation was documented in 50% of patients studied. One confirmed partial response (glioblastoma multiforme) and one minor response (brainstem glioma) were observed. Conclusions: VPA administered three times daily to maintain trough concentrations of 75 to 100 mcg/mL was well tolerated in children with refractory solid or CNS tumors. Histone hyperacetylation in PBMCs was observed in half of the patients at steady state. Future trials combining VPA with chemotherapy and/or radiation therapy should be considered, especially for CNS tumors. Clin Cancer Res; 17(3); 589–97. ©2010 AACR.


Brain Pathology | 2004

Comparison of ethanol versus formalin fixation on preservation of histology and RNA in laser capture microdissected brain tissues.

Jack Meng Fen Su; Laszlo Perlaky; Xiao-Nan Li; Hon-Chiu Eastwood Leung; Barbara Antalffy; Dawna L. Armstrong; Ching C. Lau

Although RNA can be retrieved from formalin‐fixed, paraffin‐embedded (FFPE) tissues, the yield is low, and the RNA is fragmented. Recent advances in gene expression profiling underscore the importance of identifying a fixative that preserves histology and mRNA. We demonstrated that, for immersion fixation of brains, 70% ethanol is superior to formalin for mRNA preservation. RNA yield from ethanol‐fixed tissues was 70% of the yield from fresh frozen specimens, but only a negligible quantity was recovered from formalin‐fixed tissues. RNA from ethanol‐fixed brains showed integrity comparable to RNA from fresh frozen tissues, and RT‐PCR using RNA from ethanol‐fixed tissues was consistently successful. RNA from FFPE tissues composed of low‐molecular weight fragments, and their use in RT‐PCR failed repeatedly. The yield and quality of RNA from ethanol‐fixed brains were unaffected after immersion at 4°C for 2 weeks. In a blinded comparison to FFPE tissues, ethanol‐fixed specimens were judged to show comparable histology and superior immunostaining. After laser capture microdissection (LCM), we failed to recover mRNA from FFPE tissues but retrieved mRNA from ethanol‐fixed tissues for RT‐PCR and cDNA microarray analysis. We conclude that 70% ethanol preserves RNA integrity and is suitable for expression profiling of brain tissues by LCM and cDNA microarray.

Collaboration


Dive into the Xiao-Nan Li's collaboration.

Top Co-Authors

Avatar

Mari Kogiso

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lin Qi

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Holly Lindsay

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Patricia Baxter

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jack Su

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yuchen Du

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Huiyuan Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sibo Zhao

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge