Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao Tong is active.

Publication


Featured researches published by Xiao Tong.


Hepatology | 2009

Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus–infected patients

S. Susser; Christoph Welsch; Yalan Wang; Markus Zettler; Francisco S. Domingues; Ursula Karey; Eric Hughes; Robert Ralston; Xiao Tong; Eva Herrmann; Stefan Zeuzem; Christoph Sarrazin

Boceprevir is a hepatitis C virus (HCV) nonstructural protein (NS) 3/4A protease inhibitor that is currently being evaluated in combination with peginterferon alfa‐2b and ribavirin in phase 3 studies. The clinical resistance profile of boceprevir is not characterized in detail so far. The NS3 protease domain of viral RNA was cloned from HCV genotype 1–infected patients (n = 22). A mean number of 47 clones were sequenced before, at the end, and after treatment with 400 mg boceprevir twice or three times daily for 14 days for genotypic, phenotypic, and viral fitness analysis. At the end of treatment, a wild‐type an NS3 protease sequence was observed with a mean frequency of 85.9%. In the remaining isolates, five previously observed resistance mutations (V36M/A, T54A/S, R155K/T, A156S, V170A) and one mutation (V55A) with unknown resistance to boceprevir were detected either alone or in combination. Phenotypic analysis in the HCV replicon assay showed low (V36G, T54S, R155L; 3.8‐ to 5.5‐fold 50% inhibitory concentration [IC50]), medium (V55A, R155K, V170A, T54A, A156S; 6.8‐ to 17.7‐fold IC50) and high level (A156T; >120‐fold IC50) resistance to boceprevir. The overall frequency of resistant mutations and the level of resistance increased with greater declines in mean maximum HCV RNA levels. Two weeks after the end of treatment, the frequency of resistant variants declined and the number of wild‐type isolates increased to 95.5%. With the exception of V36 and V170 variants all resistant mutations declined by more than 50%. Mathematical modeling revealed impaired replicative fitness for all single mutations, whereas for combined mutations a relative increase of replication efficiency was suggested. Conclusion: During boceprevir monotherapy, resistance mutations at six positions within the NS3 protease were detected by way of clonal sequence analysis. All mutations are associated with reduced replicative fitness estimated by mathematical modeling and show cross‐resistance to telaprevir. (HEPATOLOGY 2009.)


Antimicrobial Agents and Chemotherapy | 2006

SCH 503034, a Mechanism-Based Inhibitor of Hepatitis C Virus NS3 Protease, Suppresses Polyprotein Maturation and Enhances the Antiviral Activity of Alpha Interferon in Replicon Cells

B. Malcolm; Rong Liu; F. Lahser; Sony Agrawal; B. Belanger; N. Butkiewicz; Robert Chase; F. Gheyas; A. Hart; D. Hesk; Paul Ingravallo; C. Jiang; R. Kong; J. Lu; J. Pichardo; A. Prongay; A. Skelton; Xiao Tong; S. Venkatraman; E. Xia; Viyyoor M. Girijavallabhan; F. G. Njoroge

ABSTRACT Cleavage of the hepatitis C virus (HCV) polyprotein by the viral NS3 protease releases functional viral proteins essential for viral replication. Recent studies by Foy and coworkers strongly suggest that NS3-mediated cleavage of host factors may abrogate cellular response to alpha interferon (IFN-α) (E. Foy, K. Li, R. Sumpter, Jr., Y.-M. Loo, C. L. Johnson, C. Wang, P. M. Fish, M. Yoneyama, T. Fujita, S. M. Lemon, and M. Gale, Jr., Proc. Natl. Acad. Sci. USA 102:2986-2991, 2005, and E. Foy, K. Li, C. Wang, R. Sumpter, Jr., M. Ikeda, S. M. Lemon, and M. Gale, Jr., Science 300:1145-1148, 2003). Blockage of NS3 protease activity therefore is expected to inhibit HCV replication by both direct suppression of viral protein production as well as by restoring host responsiveness to IFN. Using structure-assisted design, a ketoamide inhibitor, SCH 503034, was generated which demonstrated potent (overall inhibition constant, 14 nM) time-dependent inhibition of the NS3 protease in cell-free enzyme assays as well as robust in vitro activity in the HCV replicon system, as monitored by immunofluorescence and real-time PCR analysis. Continuous exposure of replicon-bearing cell lines to six times the 90% effective concentration of SCH 503034 for 15 days resulted in a greater than 4-log reduction in replicon RNA. The combination of SCH 503034 with IFN was more effective in suppressing replicon synthesis than either compound alone, supporting the suggestion of Foy and coworkers that combinations of IFN with protease inhibitors would lead to enhanced therapeutic efficacy.


Antiviral Research | 2008

Characterization of resistance mutations against HCV ketoamide protease inhibitors

Xiao Tong; Stephane L. Bogen; Robert Chase; Viyyoor M. Girijavallabhan; Zhuyan Guo; F. George Njoroge; Andrew Prongay; Anil K. Saksena; Angela Skelton; Ellen Xia; Robert Ralston

An issue of clinical importance in the development of new antivirals for HCV is emergence of resistance. Several resistance loci to ketoamide inhibitors of the NS3/4A protease have been identified (residues V36, T54, R155, A156, and V170) by replicon and clinical studies. Using SCH 567312, a more potent protease inhibitor derived from SCH 503034 (boceprevir) series, we identified two new positions (Q41 and F43) that confer resistance to the ketoamide class. The catalytic efficiency of protease enzymes was not affected by most resistance mutations, whereas replicon fitness varied with specific mutations. SCH 503034 and another ketoamide inhibitor, VX-950 (telaprevir), showed moderate losses of activity against most resistance mutations (< or =10-fold); the highest resistance level was conferred by mutations at A156 locus. Although SCH 503034 and VX-950 bind similarly to the active site, differences in resistance level were observed with specific mutations. Changes at V36 and R155 had more severe impact on VX-950, whereas mutations at Q41, F43 and V170 conferred higher resistance to SCH 503034. Structural analysis of resistance mutations on inhibitor binding is discussed.


Journal of Biological Chemistry | 2006

Mutations conferring resistance to SCH6, a novel hepatitis C virus NS3/4A protease inhibitor: Reduced RNA replication fitness and partial rescue by second-site mutations

MinKyung Yi; Xiao Tong; Angela Skelton; Robert Chase; Tong Chen; Andrew Prongay; Stephane L. Bogen; Anil K. Saksena; F. George Njoroge; Ronald L. Veselenak; Richard B. Pyles; Nigel Bourne; Bruce A. Malcolm; Stanley M. Lemon

Drug resistance is a major issue in the development and use of specific antiviral therapies. Here we report the isolation and characterization of hepatitis C virus RNA replicons resistant to a novel ketoamide inhibitor of the NS3/4A protease, SCH6 (originally SCH446211). Resistant replicon RNAs were generated by G418 selection in the presence of SCH6 in a dose-dependent fashion, with the emergence of resistance reduced at higher SCH6 concentrations. Sequencing demonstrated remarkable consistency in the mutations conferring SCH6 resistance in genotype 1b replicons derived from two different strains of hepatitis C virus, A156T/A156V and R109K. R109K, a novel mutation not reported previously to cause resistance to NS3/4A inhibitors, conferred moderate resistance only to SCH6. Structural analysis indicated that this reflects unique interactions of SCH6 with P′-side residues in the protease active site. In contrast, A156T conferred high level resistance to SCH6 and a related ketoamide, SCH503034, as well as BILN 2061 and VX-950. Unlike R109K, which had minimal impact on NS3/4A enzymatic function, A156T significantly reduced NS3/4A catalytic efficiency, polyprotein processing, and replicon fitness. However, three separate second-site mutations, P89L, Q86R, and G162R, were capable of partially reversing A156T-associated defects in polyprotein processing and/or replicon fitness, without significantly reducing resistance to the protease inhibitor.


Nucleic Acids Research | 2009

Identification of HCV protease inhibitor resistance mutations by selection pressure-based method

Ping Qiu; Vincent Sanfiorenzo; Stephanie Curry; Zhuyan Guo; Shaotang Liu; Angela Skelton; Ellen Xia; Constance Cullen; Robert Ralston; Jonathan Greene; Xiao Tong

A major challenge to successful antiviral therapy is the emergence of drug-resistant viruses. Recent studies have developed several automated analyses of HIV sequence polymorphism based on calculations of selection pressure (Ka/Ks) to predict drug resistance mutations. Similar resistance analysis programs for HCV inhibitors are not currently available. Taking advantage of the recently available sequence data of patient HCV samples from a Phase II clinical study of protease inhibitor boceprevir, we calculated the selection pressure for all codons in the HCV protease region (amino acid 1–181) to identify potential resistance mutations. The correlation between mutations was also calculated to evaluate linkage between any two mutations. Using this approach, we identified previously known major resistant mutations, including a recently reported mutation V55A. In addition, a novel mutation V158I was identified, and we further confirmed its resistance to boceprevir in protease enzyme and replicon assay. We also extended the approach to analyze potential interactions between individual mutations and identified three pairs of correlated changes. Our data suggests that selection pressure-based analysis and correlation mapping could provide useful tools to analyze large amount of sequencing data from clinical samples and to identify new drug resistance mutations as well as their linkage and correlations.


ACS Medicinal Chemistry Letters | 2010

Discovery of Narlaprevir (SCH 900518): A Potent, Second Generation HCV NS3 Serine Protease Inhibitor

Ashok Arasappan; Frank Bennett; Stephane L. Bogen; Srikanth Venkatraman; Melissa Blackman; Kevin X. Chen; Siska Hendrata; Yuhua Huang; Regina Huelgas; Latha G. Nair; Angela I. Padilla; Weidong Pan; Russell E. Pike; Patrick A. Pinto; Sumei Ruan; Mousumi Sannigrahi; Francisco Velazquez; Bancha Vibulbhan; Wanli Wu; Weiying Yang; Anil K. Saksena; Viyyoor M. Girijavallabhan; Neng-Yang Shih; Jianshe Kong; Tao Meng; Yan Jin; Jesse Wong; Paul McNamara; Andrew Prongay; Vincent S. Madison

Boceprevir (SCH 503034), 1, a novel HCV NS3 serine protease inhibitor discovered in our laboratories, is currently undergoing phase III clinical trials. Detailed investigations toward a second generation protease inhibitor culminated in the discovery of narlaprevir (SCH 900518), 37, with improved potency (∼10-fold over 1), pharmacokinetic profile and physicochemical characteristics, currently in phase II human trials. Exploration of synthetic sequence for preparation of 37 resulted in a route that required no silica gel purification for the entire synthesis.


Antimicrobial Agents and Chemotherapy | 2010

Preclinical Characterization of the Antiviral Activity of SCH 900518 (Narlaprevir), a Novel Mechanism-Based Inhibitor of Hepatitis C Virus NS3 Protease

Xiao Tong; A. Arasappan; F. Bennett; Robert Chase; B. Feld; Z. Guo; A. Hart; Vincent Madison; B. Malcolm; J. Pichardo; A. Prongay; R. Ralston; A. Skelton; E. Xia; R. Zhang; F. G. Njoroge

ABSTRACT Small-molecule hepatitis C virus (HCV) NS3 protease inhibitors such as boceprevir (SCH 503034) have been shown to have antiviral activity when they are used as monotherapy and in combination with pegylated alpha interferon and ribavirin in clinical trials. Improvements in inhibitor potency and pharmacokinetic properties offer opportunities to increase drug exposure and to further increase the sustained virological response. Exploration of the structure-activity relationships of ketoamide inhibitors related to boceprevir has led to the discovery of SCH 900518, a novel ketoamide protease inhibitor which forms a reversible covalent bond with the active-site serine. It has an overall inhibition constant (K*i) of 7 nM and a dissociation half-life of 1 to 2 h. SCH 900518 inhibited replicon RNA at a 90% effective concentration (EC90) of 40 nM. In biochemical assays, SCH 900518 was active against proteases of genotypes 1 to 3. A 2-week treatment with 5× EC90 of the inhibitor reduced the replicon RNA level by 3 log units. Selection of replicon cells with SCH 900518 resulted in the outgrowth of several resistant mutants (with the T54A/S and A156S/T/V mutations). Cross-resistance studies demonstrated that the majority of mutations for resistance to boceprevir and telaprevir caused similar fold losses of activity against all three inhibitors; however, SCH 900518 retained more activity against these mutants due to its higher intrinsic potency. Combination treatment with alpha interferon enhanced the inhibition of replicon RNA and suppressed the emergence of resistant replicon colonies, supporting the use of SCH 900518-pegylated alpha interferon combination therapy in the clinic. In summary, the results of the preclinical characterization of the antiviral activity of SCH 900518 support its evaluation in clinical studies.


Journal of Medicinal Chemistry | 2009

Discovery and structure-activity relationship of P1-P3 ketoamide derived macrocyclic inhibitors of hepatitis C virus NS3 protease.

Srikanth Venkatraman; Francisco Velazquez; Wu W; Melissa Blackman; Kevin X. Chen; Stephane L. Bogen; Latha G. Nair; Xiao Tong; Robert Chase; Hart A; Sony Agrawal; John Pichardo; Andrew Prongay; Kuo-Chi Cheng; Girijavallabhan; John J. Piwinski; Neng-Yang Shih; Njoroge Fg

Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, and affects more than 200 million people worldwide. Although combination therapy of interferon-alpha and ribavirin is reasonably successful in treating majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of a series of ketoamide derived P(1)-P(3) macrocyclic inhibitors that are more potent than the first generation clinical candidate, boceprevir (1, Sch 503034), is discussed. The optimization of these macrocyclic inhibitors identified a P(3) imide capped analogue 52 that was 20 times more potent than 1 and demonstrated good oral pharmacokinetics in rats. X-ray structure of 52 bound to NS3 protease and biological data are also discussed.


Hepatology | 2010

Antiviral activity of narlaprevir combined with ritonavir and pegylated interferon in chronic hepatitis C patients

Joep de Bruijne; Jilling F. Bergmann; Henk W. Reesink; Christine J. Weegink; Richard Molenkamp; Janke Schinkel; Xiao Tong; Jing Li; Michelle A. Treitel; Eric Hughes; Jan Jaap van Lier; Andre van Vliet; Harry L.A. Janssen; Robert J. de Knegt

Narlaprevir (SCH 900518) is a potent inhibitor of the hepatitis C virus (HCV) nonstructural protein 3 serine protease that is primarily metabolized by the cytochrome P450‐3A4 system. In order to explore the use of ritonavir‐based pharmacokinetic enhancement of an HCV protease inhibitor, this study investigated the safety, tolerability, pharmacokinetics, and antiviral activity of narlaprevir (with or without ritonavir) administered as monotherapy and as combination therapy with pegylated interferon‐α‐2b (PEG‐IFN‐α‐2b) to HCV genotype 1–infected patients. This was a randomized, placebo‐controlled, two‐period, blinded study in 40 HCV genotype 1–infected patients (naïve and treatment‐experienced). In period 1, narlaprevir was administered for 7 days as 800 mg three times daily without ritonavir or 400 mg twice daily with 200 mg ritonavir twice daily. In period 2, after a 4‐week washout, the same dose and regimen of narlaprevir was administered in combination with PEG‐IFN‐α‐2b for 14 days. Upon completion of period 2, all patients initiated PEG‐IFN‐α‐2b and ribavirin treatment. A rapid and persistent decline in plasma HCV‐RNA was observed in both treatment‐experienced and treatment‐naïve patients during period 1, with a mean viral load decline of at least 4 log10 in all treatment groups. A high percentage of both treatment‐experienced (50%) and treatment‐naïve (≥60%) patients had undetectable HCV‐RNA (<25 IU/mL) after period 2. Standard of care resulted in sustained virological response (SVR) rates of 38% and 81% in treatment‐experienced and treatment‐naïve patients, respectively. Narlaprevir (with or without ritonavir) alone or in combination with PEG‐IFN‐α‐2b was safe and well tolerated. Conclusion: Narlaprevir administration resulted in a robust HCV‐RNA decline and high SVR rates when followed by standard of care in both treatment‐experienced and treatment‐naïve HCV genotype 1–infected patients. (HEPATOLOGY 2010


Journal of Medicinal Chemistry | 2010

Cyclic Sulfones as Novel P3-Caps for Hepatitis C Virus NS3/4A (HCV NS3/4A) Protease Inhibitors: Synthesis and Evaluation of Inhibitors with Improved Potency and Pharmacokinetic Profiles

Francisco Velazquez; Mousumi Sannigrahi; Frank Bennett; Raymond G. Lovey; Ashok Arasappan; Stephane L. Bogen; Latha G. Nair; Srikanth Venkatraman; Melissa Blackman; Siska Hendrata; Yuhua Huang; Regina Huelgas; Patrick A. Pinto; Kuo-Chi Cheng; Xiao Tong; Andrew T. McPhail; F. George Njoroge

HCV infection affects more than 170 million people worldwide and many of those patients will reach the end stage complications of the disease which include hepatocarcinoma and liver failure. The success rate for treatment of patients infected with genotype-1 is about 40%. Therefore, novel treatments are needed to combat the infection. The HCV NS3 protease inhibitor Boceprevir (1) was reported by our research group and efforts continue for the discovery of more potent compounds with improved pharmacokinetic profiles. A new series of HCV NS3 protease inhibitors having a cyclic sulfone P3-cap have been discovered. Compounds 43 and 44 showed K(i)* values in the single-digit nM range and their cellular potency was improved by 10-fold compared to 1. The pharmacokinetic profiles of 43 and 44 in rats and monkeys were also improved to achieve higher plasma levels after oral administration.

Collaboration


Dive into the Xiao Tong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge