Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where o- Xia is active.

Publication


Featured researches published by o- Xia.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber

Xiao-Xia Xia; Zhi-Gang Qian; Chang Seok Ki; Young Hwan Park; David L. Kaplan; Sang Yup Lee

Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250–320 kDa). Here we show that a 284.9 kDa recombinant protein of the spider Nephila clavipes is produced and spun into a fiber displaying mechanical properties comparable to those of the native silk. The native-sized protein, predominantly rich in glycine (44.9%), was favorably expressed in metabolically engineered Escherichia coli within which the glycyl-tRNA pool was elevated. We also found that the recombinant proteins of lower molecular weight versions yielded inferior fiber properties. The results provide insight into evolution of silk protein size related to mechanical performance, and also clarify why spinning lower molecular weight proteins does not recapitulate the properties of native fibers. Furthermore, the silk expression, purification, and spinning platform established here should be useful for sustainable production of natural quality dragline silk, potentially enabling broader applications.


Biotechnology and Bioengineering | 2009

Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine.

Zhi-Gang Qian; Xiao-Xia Xia; Sang Yup Lee

A four carbon linear chain diamine, putrescine (1,4-diaminobutane), is an important platform chemical having a wide range of applications in chemical industry. Biotechnological production of putrescine from renewable feedstock is a promising alternative to the chemical synthesis that originates from non-renewable petroleum. Here we report development of a metabolically engineered strain of Escherichia coli that produces putrescine at high titer in glucose mineral salts medium. First, a base strain was constructed by inactivating the putrescine degradation and utilization pathways, and deleting the ornithine carbamoyltransferase chain I gene argI to make more precursors available for putrescine synthesis. Next, ornithine decarboxylase, which converts ornithine to putrescine, was amplified by a combination of plasmid-based and chromosome-based overexpression of the coding genes under the strong tac or trc promoter. Furthermore, the ornithine biosynthetic genes (argC-E) were overexpressed from the trc promoter, which replaced the native promoter in the genome, to increase the ornithine pool. Finally, strain performance was further improved by the deletion of the stress responsive RNA polymerase sigma factor RpoS, a well-known global transcription regulator that controls the expression of ca. 10% of the E. coli genes. The final engineered E. coli strain was able to produce 1.68 g L(-1) of putrescine with a yield of 0.168 g g(-1) glucose. Furthermore, high cell density cultivation allowed production of 24.2 g L(-1) of putrescine with a productivity of 0.75 g L(-1) h(-1). The strategy reported here should be useful for the bio-based production of putrescine from renewable resources, and also for the development of strains capable of producing other diamines, which are important as nitrogen-containing platform chemicals.


Biomaterials | 2011

The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials.

Xiao Hu; Sang-Hyug Park; Eun Seok Gil; Xiao-Xia Xia; Anthony S. Weiss; David L. Kaplan

The interactions of C2C12 myoblasts and human bone marrow stem cells (hMSCs) with silk-tropoelastin biomaterials, and the capacity of each to promote attachment, proliferation, and either myogenic- or osteogenic-differentiation were investigated. Temperature-controlled water vapor annealing was used to control beta-sheet crystal formation to generate insoluble silk-tropoelastin biomaterial matrices at defined ratios of the two proteins. These ratios controlled surface roughness and micro/nano-scale topological patterns, and elastic modulus, stiffness, yield stress, and tensile strength. A combination of low surface roughness and high stiffness in the silk-tropoelastin materials promoted proliferation and myogenic-differentiation of C2C12 cells. In contrast, high surface roughness with micro/nano-scale surface patterns was favored by hMSCs. Increasing the content of human tropoelastin in the silk-tropoelastin materials enhanced the proliferation and osteogenic-differentiation of hMSCs. We conclude that the silk-tropoelastin composition facilitates fine tuning of the growth and differentiation of these cells.


Biotechnology and Bioengineering | 2011

Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine.

Zhi-Gang Qian; Xiao-Xia Xia; Sang Yup Lee

A five carbon linear chain diamine, cadaverine (1,5‐diaminopentane), is an important platform chemical having many applications in chemical industry. Bio‐based production of cadaverine from renewable feedstock is a promising and sustainable alternative to the petroleum‐based chemical synthesis. Here, we report development of a metabolically engineered strain of Escherichia coli that overproduces cadaverine in glucose mineral salts medium. First, cadaverine degradation and utilization pathways were inactivated. Next, L‐lysine decarboxylase, which converts L‐lysine directly to cadaverine, was amplified by plasmid‐based overexpression of the cadA gene under the strong tac promoter. Furthermore, the L‐lysine biosynthetic pool was increased by the overexpression of the dapA gene encoding dihydrodipicolinate synthase through the replacement of the native promoter with the strong trc promoter in the genome. The final engineered strain was able to produce 9.61 g L−1 of cadaverine with a productivity of 0.32 g L−1 h−1 by fed‐batch cultivation. The strategy reported here should be useful for the bio‐based production of cadaverine from renewable resources. Biotechnol. Bioeng. 2011; 108:93–103.


Biomacromolecules | 2011

Tunable Self-Assembly of Genetically Engineered Silk-Elastin-Like Protein Polymers

Xiao-Xia Xia; Qiaobing Xu; Xiao Hu; Guokui Qin; David L. Kaplan

Silk--elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Because of the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk-to-elastin blocks in a SELPs repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels, and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering, and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering.


Genome Biology | 2012

Comparative multi-omics systems analysis of Escherichia coli strains B and K-12

Mee-Jung Han; Haeyoung Jeong; Choong Hoon Lee; Xiao-Xia Xia; Dae-Hee Lee; Ji Hoon Shim; Sang Yup Lee; Tae Kwang Oh; Jihyun F. Kim

BackgroundElucidation of a genotype-phenotype relationship is critical to understand an organism at the whole-system level. Here, we demonstrate that comparative analyses of multi-omics data combined with a computational modeling approach provide a framework for elucidating the phenotypic characteristics of organisms whose genomes are sequenced.ResultsWe present a comprehensive analysis of genome-wide measurements incorporating multifaceted holistic data - genome, transcriptome, proteome, and phenome - to determine the differences between Escherichia coli B and K-12 strains. A genome-scale metabolic network of E. coli B was reconstructed and used to identify genetic bases of the phenotypes unique to B compared with K-12 through in silico complementation testing. This systems analysis revealed that E. coli B is well-suited for production of recombinant proteins due to a greater capacity for amino acid biosynthesis, fewer proteases, and lack of flagella. Furthermore, E. coli B has an additional type II secretion system and a different cell wall and outer membrane composition predicted to be more favorable for protein secretion. In contrast, E. coli K-12 showed a higher expression of heat shock genes and was less susceptible to certain stress conditions.ConclusionsThis integrative systems approach provides a high-resolution system-wide view and insights into why two closely related strains of E. coli, B and K-12, manifest distinct phenotypes. Therefore, systematic understanding of cellular physiology and metabolism of the strains is essential not only to determine culture conditions but also to design recombinant hosts.


Proteomics | 2008

Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation.

Xiao-Xia Xia; Mee-Jung Han; Sang Yup Lee; Jong-Shin Yoo

Escherichia coli BL21 (DE3) and W3110 strains, belonging to the family B and K‐12, respectively, have been most widely employed for recombinant protein production. During the excretory production of recombinant proteins by high cell density cultivation (HCDC) of these strains, other native E. coli proteins were also released. Thus, we analyzed the extracellular proteomes of E. coli BL21 (DE3) and W3110 during HCDC. E. coli BL21 (DE3) released more than twice the amount of protein compared with W3110 during HCDC. A total of 204 protein spots including 83 nonredundant proteins were unambiguously identified by 2‐DE and MS. Of these, 32 proteins were conserved in the two strains, while 20 and 33 strain‐specific proteins were identified for E. coli BL21 (DE3) and W3110, respectively. More than 70% of identified proteins were found to be of periplasmic origin. The outer membrane proteins, OmpA and OmpF, were most abundant. Two strains showed much different patterns in their released proteins. Also, cell density‐dependent variations in the released proteins were observed in both strains. These findings summarized as reference proteome maps will be useful for studying protein release in further detail, and provide new strategies for enhanced excretory production of recombinant proteins.


Biotechnology and Bioengineering | 2008

Proteome-Based Identification of Fusion Partner for High-Level Extracellular Production of Recombinant Proteins in Escherichia coli

Zhi-Gang Qian; Xiao-Xia Xia; Jong Hyun Choi; Sang Yup Lee

Extracellular production of recombinant proteins in Escherichia coli has several advantages over cytoplasmic or periplasmic production. However, nonpathogenic laboratory strains of E. coli generally excrete only trace amounts of proteins into the culture medium under normal growth conditions. Here we report a systematic proteome‐based approach for developing a system for high‐level extracellular production of recombinant proteins in E. coli. First, we analyzed the extracellular proteome of an E. coli B strain, BL21(DE3), to identify naturally excreted proteins, assuming that these proteins may serve as potential fusion partners for the production of recombinant proteins in the medium. Next, overexpression and excretion studies were performed for the 20 selected fusion partners with molecular weights below 40 kDa. Twelve of them were found to allow fused proteins to excrete into the medium at considerable levels. The most efficient excreting fusion partner, OsmY, was used as a carrier protein to excrete heterologous proteins into the medium. E. coli alkaline phosphatase, Bacillus subtilis α‐amylase, and human leptin used as model proteins could all be excreted into the medium at concentrations ranging from 5 to 64 mg/L during the flask cultivation. When only the signal peptide or the mature part of OsmY was used as a fusion partner, no such excretion was observed; this confirmed that these proteins were truly excreted rather than released by outer membrane leakage. The recombinant protein of interest could be recovered by cleaving off the fusion partner by enterokinase as demonstrated for alkaline phosphatase as an example. High cell density cultivation allowed production of these proteins to the levels of 250–700 mg/L in the culture medium, suggesting the good potential of this approach for the excretory production of recombinant proteins. Biotechnol. Bioeng. 2008;101: 587–601.


Biotechnology and Bioengineering | 2014

Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli

Jia-Le Yu; Xiao-Xia Xia; Jian-Jiang Zhong; Zhi-Gang Qian

The C6 dicarboxylic acid, adipic acid, is an important platform chemical in industry. Biobased production of adipic acid is a promising alternative to the current petrochemical route. Here, we report biosynthesis of adipic acid using an artificial pathway inspired by the reversal of beta-oxidation of dicarboxylic acids. The biosynthetic pathway comprises condensation of acetyl-CoA and succinyl-CoA to form the C6 backbone and subsequent reduction, dehydration, hydrogenation, and release of adipic acid from its thioester. The pathway was first tested in vitro with reconstituted pathway enzymes and then functionally introduced into Escherichia coli for the biosynthesis and excretion of adipic acid into the culture medium. The production titer was increased by approximately 20-fold through the combination of recruiting enzymes that were more suitable to catalyze the synthetic reactions and increasing availability of the condensation substrates. This work demonstrates direct biosynthesis of adipic acid via non-natural synthetic pathway, which may enable its renewable production.


Biomacromolecules | 2014

Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery

Xiao-Xia Xia; Ming Wang; Yinan Lin; Qiaobing Xu; David L. Kaplan

Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.

Collaboration


Dive into the o- Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Jiang Zhong

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhitao Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shaoqing Zhang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianjuan Jiang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge