Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Ya Chen is active.

Publication


Featured researches published by Xiao-Ya Chen.


Nature Biotechnology | 2007

Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol

Ying-Bo Mao; Wen-Juan Cai; Jia-Wei Wang; Gao-Jie Hong; Xiao-Yuan Tao; Ling-Jian Wang; Yongping Huang; Xiao-Ya Chen

We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA–expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.


The Plant Cell | 2005

Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis

Jia-Wei Wang; Ling-Jian Wang; Ying-Bo Mao; Wen-Juan Cai; Hong-Wei Xue; Xiao-Ya Chen

The plant root cap mediates the direction of root tip growth and protects internal cells. Root cap cells are continuously produced from distal stem cells, and the phytohormone auxin provides position information for root distal organization. Here, we identify the Arabidopsis thaliana auxin response factors ARF10 and ARF16, targeted by microRNA160 (miR160), as the controller of root cap cell formation. The Pro35S:MIR160 plants, in which the expression of ARF10 and ARF16 is repressed, and the arf10-2 arf16-2 double mutants display the same root tip defect, with uncontrolled cell division and blocked cell differentiation in the root distal region and show a tumor-like root apex and loss of gravity-sensing. ARF10 and ARF16 play a role in restricting stem cell niche and promoting columella cell differentiation; although functionally redundant, the two ARFs are indispensable for root cap development, and the auxin signal cannot bypass them to initiate columella cell production. In root, auxin and miR160 regulate the expression of ARF10 and ARF16 genes independently, generating a pattern consistent with root cap development. We further demonstrate that miR160-uncoupled production of ARF16 exerts pleiotropic effects on plant phenotypes, and miR160 plays an essential role in regulating Arabidopsis development and growth.


Nature Biotechnology | 2015

Sequencing of allotetraploid cotton ( Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement

Tianzhen Zhang; Yan Hu; Wenkai Jiang; Lei Fang; Xueying Guan; Jiedan Chen; Jinbo Zhang; Christopher A Saski; Brian E. Scheffler; David M. Stelly; Amanda M Hulse-Kemp; Qun Wan; Bingliang Liu; Chunxiao Liu; Sen Wang; Mengqiao Pan; Yangkun Wang; Dawei Wang; Wenxue Ye; Lijing Chang; Wenpan Zhang; Qingxin Song; Ryan C Kirkbride; Xiao-Ya Chen; Elizabeth S. Dennis; Danny J. Llewellyn; Daniel G. Peterson; Peggy Thaxton; D. Jones; Qiong Wang

Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.


The Plant Cell | 2004

Control of Plant Trichome Development by a Cotton Fiber MYB Gene

Shui Wang; Jia-Wei Wang; Nan Yu; Chun-Hong Li; Bin Luo; Jin-Ying Gou; Ling-Jian Wang; Xiao-Ya Chen

Cotton (Gossypium spp) plants produce seed trichomes (cotton fibers) that are an important commodity worldwide; however, genes controlling cotton fiber development have not been characterized. In Arabidopsis thaliana the MYB gene GLABRA1 (GL1) is a central regulator of trichome development. Here, we show that promoter of a cotton fiber gene, RD22-like1 (RDL1), contains a homeodomain binding L1 box and a MYB binding motif that confer trichome-specific expression in Arabidopsis. A cotton MYB protein GaMYB2/Fiber Factor 1 transactivated the RDL1 promoter both in yeast and in planta. Real-time PCR and in situ analysis showed that GaMYB2 is predominantly expressed early in developing cotton fibers. After transferring into Arabidopsis, GL1::GaMYB2 rescued trichome formation of a gl1 mutant, and interestingly, 35S::GaMYB2 induced seed-trichome production. We further demonstrate that the first intron of both GL1 and GaMYB2 plays a role in patterning trichomes: it acts as an enhancer in trichome and a repressor in nontrichome cells, generating a trichome-specific pattern of MYB gene expression. Disruption of a MYB motif conserved in intron 1 of GL1, WEREWOLF, and GaMYB2 genes affected trichome production. These results suggest that cotton and Arabidopsis use similar transcription factors for regulating trichomes and that GaMYB2 may be a key regulator of cotton fiber development.


Plant Physiology | 2004

Characterization of GaWRKY1, a Cotton Transcription Factor That Regulates the Sesquiterpene Synthase Gene (+)-δ-Cadinene Synthase-A

Yan-Hua Xu; Jia-Wei Wang; Shui Wang; Jianying Wang; Xiao-Ya Chen

The cotton (+)-δ-cadinene synthase (CAD1), a sesquiterpene cyclase, catalyzes a branch-point step leading to biosynthesis of sesquiterpene phytoalexins, including gossypol. CAD1-A is a member of CAD1 gene family, and its promoter contains a W-box palindrome with two reversely oriented TGAC repeats, which are the proposed binding sites of WRKY transcription factors. We isolated several WRKY cDNAs from Gossypium arboreum. One of them, GaWRKY1, encodes a protein containing a single WRKY domain and a putative N-terminal Leu zipper. Similar to genes encoding enzymes of cotton sesquiterpene pathway, GaWRKY1 was down-regulated in a glandless cotton cultivar that contained much less gossypol. GaWRKY1 showed a temporal and spatial pattern of expression comparable to that of CAD1-A in various aerial organs examined, including sepal, stigma, anther, and developing seeds. In suspension cells, expression of both GaWRKY1 and CAD1-A genes and biosynthesis of sesquiterpene aldehydes were strongly induced by a fungal elicitor preparation and methyl jasmonate. GaWRKY1 interacted with the 3× W-box derived from CAD1-A promoter in yeast (Saccharomyces cerevisiae) one-hybrid system and in vitro. Furthermore, in transgenic Arabidopsis plants, overexpression of GaWRKY1 highly activated the CAD1-A promoter, and transient assay in tobacco (Nicotiana tabacum) leaves demonstrated that W-box was required for this activation. These results suggest that GaWRKY1 participates in regulation of sesquiterpene biosynthesis in cotton, and CAD1-A is a target gene of this transcription factor.


The Plant Cell | 2012

Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression.

Gao-Jie Hong; Xue-Yi Xue; Ying-Bo Mao; Ling-Jian Wang; Xiao-Ya Chen

This work examines the regulation of two sesquiterpene synthases and shows that gibberellin and jasmonate jointly regulate the biosynthesis of sesquiterpenes through the transcription factor MYC2, and the gibberellin signal is transduced to this secondary metabolism pathway through a DELLA–MYC2 interaction Arabidopsis thaliana flowers emit volatile terpenes, which may function in plant–insect interactions. Here, we report that Arabidopsis MYC2, a basic helix-loop-helix transcription factor, directly binds to promoters of the sesquiterpene synthase genes TPS21 and TPS11 and activates their expression. Expression of TPS21 and TPS11 can be induced by the phytohormones gibberellin (GA) and jasmonate (JA), and both inductions require MYC2. The induction of TPS21 and TPS11 results in increased emission of sesquiterpene, especially (E)-β-caryophyllene. DELLAs, the GA signaling repressors, negatively affect sesquiterpene biosynthesis, as the sesquiterpene synthase genes were repressed in plants overaccumulating REPRESSOR OF GA1-3 (RGA), one of the Arabidopsis DELLAs, and upregulated in a penta DELLA-deficient mutant. Yeast two-hybrid and coimmunoprecipitation assays demonstrated that DELLAs, represented by RGA, directly interact with MYC2. In yeast cells, the N terminus of MYC2 was responsible for binding to RGA. MYC2 has been proposed as a major mediator of JA signaling and crosstalk with abscisic acid, ethylene, and light signaling pathways. Our results demonstrate that MYC2 is also connected to GA signaling in regulating a subset of genes. In Arabidopsis inflorescences, it integrates both GA and JA signals into transcriptional regulation of sesquiterpene synthase genes and promotes sesquiterpene production.


Theoretical and Applied Genetics | 2006

Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton.

Zhiguo Han; Changbiao Wang; Xianliang Song; Wangzhen Guo; Jin-Ying Gou; Chun-Hong Li; Xiao-Ya Chen; Tianzhen Zhang

In order to construct a saturated genetic map and facilitate marker-assisted selection (MAS) breeding, it is necessary to enhance the current reservoir of known molecular markers in Gossypium. Microsatellites or simple sequence repeats (SSRs) occur in expressed sequence tags (EST) in plants (Kantety et al., Plant Mol Biol 48:501–510, 2002). Many ESTs are publicly available now and represent a good tool in developing EST-SSRs. From 13,505 ESTs developed from our two cotton fiber/ovule cDNA libraries constructed for Upland cotton, 966 (7.15%) contained one or more SSRs and from them, 489 EST-SSR primer pairs were developed. Among the EST-SSRs, 59.1% are trinucleotides, followed by dinucleotides (30%), tetranucleotides (6.4%), pentanucleotides (1.8%), and hexanucleotides (2.7%). AT/TA (18.4%) is the most frequent repeat, followed by CTT/GAA (5.3%), AG/TC (5.1%), AGA/TCT (4.9%), AGT/TCA (4.5%), and AAG/TTC (4.5%). One hundred and thirty EST-SSR loci were produced from 114 informative EST-SSR primer pairs, which generated polymorphism between our two mapping parents. Of these, 123 were integrated on our allotetraploid cotton genetic map, based on the cross [(TM-1×Hai7124)TM-1]. EST-SSR markers were distributed over 20 chromosomes and 6 linkage groups in the map. These EST-SSR markers can be used in genetic mapping, identification of quantitative trait loci (QTLs), and comparative genomics studies of cotton.


PLOS Genetics | 2011

MiRNA control of vegetative phase change in trees

Jia-Wei Wang; Mee Yeon Park; Ling Jian Wang; Yeonjong Koo; Xiao-Ya Chen; Detlef Weigel; R. Scott Poethig

After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.


Plant Physiology | 2007

Toward Sequencing Cotton (Gossypium) Genomes

Z. Jeffrey Chen; Brian E. Scheffler; Elizabeth S. Dennis; Barbara A. Triplett; Tianzhen Zhang; Wangzhen Guo; Xiao-Ya Chen; David M. Stelly; Pablo D. Rabinowicz; Christopher D. Town; Tony Arioli; Curt L. Brubaker; Roy G. Cantrell; Jean Marc Lacape; Mauricio Ulloa; Peng Chee; Alan R. Gingle; Candace H. Haigler; Richard G. Percy; Sukumar Saha; Thea A. Wilkins; Robert J. Wright; Allen Van Deynze; Yuxian Zhu; Shuxun Yu; Ibrokhim Y. Abdurakhmonov; Ishwarappa S. Katageri; P. Ananda Kumar; Mehboob-ur-Rahman; Yusuf Zafar

Despite rapidly decreasing costs and innovative technologies, sequencing of angiosperm genomes is not yet undertaken lightly. Generating larger amounts of sequence data more quickly does not address the difficulties of sequencing and assembling complex genomes de novo. The cotton ( Gossypium spp.)


The Plant Cell | 2010

Temporal Control of Trichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana

Nan Yu; Wen-Juan Cai; Shucai Wang; Chun-Min Shan; Ling-Jian Wang; Xiao-Ya Chen

The microRNA156-targeted SQUAMOSA PROMOTER BINDING PROTEIN LIKE genes, which were reported to define an endogenous phase transition pathway, temporally control the trichome distribution on the stem and inflorescences by activating the trichome negative regulator genes TRICHOMELESS1 and TRIPTYCHON. The production and distribution of plant trichomes is temporally and spatially regulated. After entering into the flowering stage, Arabidopsis thaliana plants have progressively reduced numbers of trichomes on the inflorescence stem, and the floral organs are nearly glabrous. We show here that SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, which define an endogenous flowering pathway and are targeted by microRNA 156 (miR156), temporally control the trichome distribution during flowering. Plants overexpressing miR156 developed ectopic trichomes on the stem and floral organs. By contrast, plants with elevated levels of SPLs produced fewer trichomes. During plant development, the increase in SPL transcript levels is coordinated with the gradual loss of trichome cells on the stem. The MYB transcription factor genes TRICHOMELESS1 (TCL1) and TRIPTYCHON (TRY) are negative regulators of trichome development. We show that SPL9 directly activates TCL1 and TRY expression through binding to their promoters and that this activation is independent of GLABROUS1 (GL1). The phytohormones cytokinin and gibberellin were reported to induce trichome formation on the stem and inflorescence via the C2H2 transcription factors GIS, GIS2, and ZFP8, which promote GL1 expression. We show that the GIS-dependent pathway does not affect the regulation of TCL1 and TRY by miR156-targeted SPLs, represented by SPL9. These results demonstrate that the miR156-regulated SPLs establish a direct link between developmental programming and trichome distribution.

Collaboration


Dive into the Xiao-Ya Chen's collaboration.

Top Co-Authors

Avatar

Ling-Jian Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying-Bo Mao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chang-Qing Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Xia Shangguan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia-Wei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xue-Yi Xue

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chun-Min Shan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge