Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaobiao Xu is active.

Publication


Featured researches published by Xiaobiao Xu.


Bulletin of the American Meteorological Society | 2009

Improving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team

Sonya Legg; Bruce P. Briegleb; Yeon S. Chang; Eric P. Chassignet; Gokhan Danabasoglu; Tal Ezer; Arnold L. Gordon; Stephen M. Griffies; Robert Hallberg; Laura Jackson; William G. Large; Tamay M. Özgökmen; Hartmut Peters; Jim Price; Ulrike Riemenschneider; Wanli Wu; Xiaobiao Xu; Jiayan Yang

Abstract Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model dev...


Journal of Geophysical Research | 2014

Intraseasonal to interannual variability of the Atlantic meridional overturning circulation from eddy-resolving simulations and observations

Xiaobiao Xu; Eric P. Chassignet; William E. Johns; William J. Schmitz; E. Joseph Metzger

Results from two 1/12° eddy-resolving simulations, together with data-based transport estimates at 26.5°N and 41°N, are used to investigate the temporal variability of the Atlantic meridional overturning circulation (AMOC) during 2004–2012. There is a good agreement between the model and the observation for all components of the AMOC at 26.5°N, whereas the agreement at 41°N is primarily due to the Ekman transport. We found that (1) both observations and model results exhibit higher AMOC variability on seasonal and shorter time scales than on interannual and longer time scales; (2) on intraseasonal and interannual time scales, the AMOC variability is often coherent over a wide latitudinal range, but lacks an overall consistent coherent pattern over the entire North Atlantic; and (3) on seasonal time scales, the AMOC variability exhibits two distinct coherent regimes north and south of 20°N, due to different wind stress variability in the tropics and subtropics. The high AMOC variability south of 20°N in the tropical Atlantic comes primarily from the Ekman transport of the near-surface water, and is modulated to some extent by the transport of the Antarctic Intermediate water below the thermocline. These results highlight the importance of the surface wind in driving the AMOC variability.


Journal of Physical Oceanography | 2008

Numerical Simulation of the Red Sea Outflow Using HYCOM and Comparison with REDSOX Observations

Yeon S. Chang; Tamay M. Özgökmen; Hartmut Peters; Xiaobiao Xu

Abstract The outflow of warm, salty, and dense water from the Red Sea into the western Gulf of Aden is numerically simulated using the Hybrid Coordinate Ocean Model (HYCOM). The pathways of the modeled overflow, temperature, salinity, velocity profiles from stations and across sections, and transport estimates are compared to those observed during the 2001 Red Sea Outflow Experiment. As in nature, the simulated outflow is funneled into two narrow channels along the seafloor. The results from the three-dimensional simulations show a favorable agreement with the observed temperature and salinity profiles along the channels. The volume transport of the modeled overflow increases with the increasing distance from the southern exit of the Bab el Mandeb Strait due to entrainment of ambient fluid, such that the modeled transport shows a reasonable agreement with that estimated from the observations. The initial propagation speed of the outflow is found to be smaller than the estimated interfacial wave speed. The...


Archive | 2011

Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example

Harley E. Hurlburt; E. Joseph Metzger; James G. Richman; Eric P. Chassignet; Yann Drillet; Matthew W. Hecht; Olivier Le Galloudec; Jay F. Shriver; Xiaobiao Xu; Luis Zamudio

The Gulf Stream is the focus of an effort aimed at dynamical understanding and evaluation of current systems simulated by eddy-resolving Ocean General Circulation Models (OGCMs), including examples with and without data assimilation and results from four OGCMs (HYCOM, MICOM, NEMO, and POP), the first two including Lagrangian isopycnal coordinates in the vertical and the last two using fixed depths. The Gulf Stream has been challenging to simulate and understand. While different non-assimilative models have at times simulated a realistic Gulf Stream pathway, the simulations are very sensitive to small changes, such as subgrid-scale parameterizations and parameter values. Thus it is difficult to obtain consistent results and serious flaws are often simulated upstream and downstream of Gulf Stream separation from the coast at Cape Hatteras. In realistic simulations, steering by a key abyssal current and a Gulf Stream feedback mechanism constrain the latitude of the Gulf Stream near 68.5°W. Additionally, the Gulf Stream follows a constant absolute vorticity (CAV) trajectory from Cape Hatteras to ~70°W, but without the latitudinal constraint near 68.5°W, the pathway typically develops a northern or southern bias. A shallow bias in the southward abyssal flow of the Atlantic Meridional Overturning Circulation (AMOC) creates a serious problem in many simulations because it results in abyssal currents along isobaths too shallow to feed into the key abyssal current or other abyssal currents that provide a similar pathway constraint. Pathways with a southern bias are driven by a combination of abyssal currents crossing under the Gulf Stream near the separation point and the increased opportunity for strong flow instabilities along the more southern route. The associated eddy-driven mean abyssal currents constrain the mean pathway to the east. Due to sloping topography, flow instabilities are inhibited along the more northern routes west of ~69°W, especially for pathways with a northern bias. The northern bias occurs when the abyssal current steering constraint needed for a realistic pathway is missing or too weak and the simulation succumbs to the demands of linear dynamics for an overshoot pathway. Both the wind forcing and the upper ocean branch of the AMOC contribute to those demands. Simulations with a northern pathway bias were all forced by a wind product particularly conducive to that result and they have a strong or typical AMOC transport with a shallow bias in the southward flow. Simulations forced by the same wind product (or other wind products) that have a weak AMOC with a shallow bias in the southward limb exhibit Gulf Stream pathways with a southern bias. Data assimilation has a very positive impact on the model dynamics by increasing the strength of a previously weak AMOC and by increasing the depth range of the deep southward branch. The increased depth range of the southward branch generates more realistic abyssal currents along the continental slope. This result in combination with vortex stretching and compression generated by the data-assimilative approximation to meanders in the Gulf Stream and related eddies in the upper ocean yield a model response that simulates the Gulf Stream-relevant abyssal current features seen in historical in situ observations, including the key abyssal current near 68.5°W, a current not observed in the assimilated data set or corresponding simulations without data assimilation. In addition, the model maintains these abyssal currents in a mean of 48 14-day forecasts, but does not maintain the strength of the Gulf Stream east of the western boundary.


Journal of Physical Oceanography | 2017

Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability

Eric P. Chassignet; Xiaobiao Xu

AbstractThe impact of horizontal resolution (1/12° to 1/50°; 6 to 1.5 km at midlatitudes) on Gulf Stream separation, penetration, and variability is quantified in a series of identical North Atlantic experiments. The questions the authors seek to address are twofold: 1) Is the realism of the modeled solution increased as resolution is increased? 2) How robust is the modeled mesoscale and submesoscale eddy activity as a function of grid spacing and how representative is it of interior quasigeostrophic (QG) or surface quasigeostrophic (SQG) turbulence? This study shows that (i) the representation of Gulf Stream penetration and associated recirculating gyres shifts from unrealistic to realistic when the resolution is increased to 1/50° and when the nonlinear effects of the submesoscale eddies intensifies the midlatitude jet and increases its penetration eastward, (ii) the penetration into the deep ocean drastically increases with resolution and closely resembles the observations, and (iii) surface power spec...


Journal of Climate | 2016

Temperature–Salinity Structure of the North Atlantic Circulation and Associated Heat and Freshwater Transports

Xiaobiao Xu; Peter B. Rhines; Eric P. Chassignet

AbstractThis study investigates the circulation structure and relative contribution of circulation components to the time-mean meridional heat and freshwater transports in the North Atlantic, using numerical results of a high-resolution ocean model that are shown to be in excellent agreement with the observations. The North Atlantic circulation can be separated into the large-scale Atlantic meridional overturning circulation (AMOC) that is diapycnal and the subtropical and subpolar gyres that largely flow along isopycnal surfaces but also include prominent gyre-scale diapycnal overturning in the Subtropical Mode Water and Labrador Sea Water. Integrals of the meridional volume transport as a function of potential temperature θ and salinity S yield streamfunctions with respect to θ and to S, and heat functions. These argue for a significant contribution to the heat transport by the southward circulation of North Atlantic Deep Water. At 26.5°N, the isopycnic component of the subtropical gyre is colder and fr...


Journal of Physical Oceanography | 2015

Spreading of Denmark Strait overflow water in the western subpolar North Atlantic : insights from eddy-resolving simulations with a passive tracer

Xiaobiao Xu; Peter B. Rhines; Eric P. Chassignet; William J. Schmitz

AbstractThe oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the up...


Geophysical Research Letters | 2018

Salinification in the South China Sea Since Late 2012: A Reversal of the Freshening Since the 1990s

Lili Zeng; Eric P. Chassignet; Raymond W. Schmitt; Xiaobiao Xu; Dongxiao Wang

Salinification has occurred in the South China Sea from late 2012 to the present, as shown by satellite Aquarius/Soil Moisture Active Passive data and Argo float data. This salinification follows a 20 year freshening trend that started in 1993. The salinification signal is strongest near the surface and extends downward under the seasonal thermocline to a depth of 150 m. The salinification occurs when the phase of the Pacific Decadal Oscillation switches from negative to positive. Diagnosis of the salinity budget suggests that an increasing net surface freshwater loss and the horizontal salt advection through the Luzon Strait driven by the South China Sea throughflow contributed to this ongoing salinification. In particular, a decrease in precipitation and enhanced Luzon Strait transport dominated the current intense salinification. Of particular interest is whether this salinification will continue until it reaches the previous maximum recorded in 1992. Plain Language Summary A significant salinification is taking place in the South China Sea starting from late 2012 to the present, as seen in satellite and Argo float data. The temperature, in contrast, exhibits no significant change. The salinification is mainly associated with switches in the Pacific Decadal Oscillation from negative to positive phase from late 2012 to the present. A decrease in precipitation and enhanced Luzon Strait transport dominated the current intense salinification. After a freshening period that lasted 20 years, we are particularly interested in whether the salinification will continue in the future.


Journal of Physical Oceanography | 2017

The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models

David S. Trossman; Brian K. Arbic; David N. Straub; James G. Richman; Eric P. Chassignet; Alan J. Wallcraft; Xiaobiao Xu

Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β-plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.


Journal of Physical Oceanography | 2018

On Mapping the Diapycnal Water Mass Transformation of the Upper North Atlantic Ocean

Xiaobiao Xu; Peter B. Rhines; Eric P. Chassignet

AbstractDiapycnal water mass transformation is the essence behind the Atlantic meridional overturning circulation (AMOC) and the associated heat/freshwater transports. Existing studies have mostly ...

Collaboration


Dive into the Xiaobiao Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harley E. Hurlburt

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Hogan

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Joseph Metzger

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge