Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaobin Tan is active.

Publication


Featured researches published by Xiaobin Tan.


Journal of Ethnopharmacology | 2013

Protection of glycyrrhizic acid against AGEs-induced endothelial dysfunction through inhibiting RAGE/NF-κB pathway activation in human umbilical vein endothelial cells.

Liang Feng; Maomao Zhu; Minghua Zhang; Rushang Wang; Xiaobin Tan; Jie Song; Shumin Ding; Xiaobin Jia; Shaoying Hu

ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhiza uralensis roots) is used as a traditional medicine for the treatment of diabetes mellitus and its vascular complications. Glycyrrhizic acid (GA, also known as Glycyrrhizin), a triterpenoid saponin glycoside, is considered to be a bioactive component in Licorice and is beneficial to diabetic vascular complications. AIM OF STUDY The present study was conducted to evaluate the potential protective activities on AGEs-induced endothelial dysfunction, including anti-apoptosis, antioxidant stress and anti-proinflammatory responses, and explore the underlying mechanism. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were incubated and pre-treated with GA (10(-9)-10(-6)M) or RAGE-Ab (5μg/ml) in the presence or absence of 200μg/ml AGEs. AO/EB fluorescence staining assay was performed to evaluate anti-apoptosis activity. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in cell supernatant were detected by kits while the intracellular reactive oxygen species (ROS) generation was determined by 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) kit. Immunocytochemistry analysis was designed to determine transforming growth factor beta1(TGF-β1) protein expression while immunofluorescence analysis for RAGE and NF-kB. The protein expressions of TGF-β1, RAGE and NF-kB were analyzed by Western blot analysis. RESULTS Pretreatment with GA at a concentration of 10(-8)-10(-6)M significantly reduced the AGEs-induced apoptosis in HUVECs. GA significantly increased antioxidant enzyme SOD activity and decreased peroxide degradation product MDA level in a dose-dependent manner. Furthermore, GA also remarkably inhibited the overgeneration of AGEs-induced ROS. Both immunocytochemistry analysis and western blot analysis showed that GA significantly decreased the protein expression of poinflammatory cytokine TGF-β1 in a similar manner which RAGE-Ab did. Additionally, AGEs-induced RAGE and NF-kB protein expressions were down-regulated significantly by the pretreatment with GA or RAGE-Ab. CONCLUSION These findings provide evidences that GA possesses protective activity on AGEs-induced endothelial dysfunction, including anti-apoptosis, anti-inflammation and antioxidant stress, via inhibiting RAGE/NF-kB pathway. GA might be an alternative for the prevention and treatment of diabetic vascular complications in an appropriate dosage.


Journal of Ethnopharmacology | 2016

Combination of Ligusticum chuanxiong and Radix Paeoniae ameliorate focal cerebral ischemic in MCAO rats via endoplasmic reticulum stress-dependent apoptotic signaling pathway

Junfei Gu; Juan Chen; Nan Yang; Xuefeng Hou; Jing Wang; Xiaobin Tan; Liang Feng; Xiaobin Jia

ETHNOPHARMACOLOGICAL RELEVANCE Combination of Ligusticum chuanxiong and Radix Paeoniae (XS) is highly effective in the treatment for focal cerebral ischemic, but the underlying mechanism is not clear. This study was conducted to evaluate the combinative effects of XS on MCAO rats and explore the underlying mechanisms. MATERIALS AND METHODS MCAO rats were used to evaluate the protective effect of Ligusticum chuanxiong (CX), Radix Paeoniae Rubra (CS) and their combination (XS) on ameliorating focal cerebral ischemic. Cerebral ischemia deficits and infarct size were performed by 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H-E) staining. Activities of SOD, CAT and GSH-Px, as well as levels of LPO and MDA were detected by commercial kits while ELISA kits for the content of plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator (PA). Immunohistochemistry (IHC) and western blot analysis (WB) were carried out to examine the protein expressions including PKR-like endoplasmic reticulum kinase (PERK), cytoplasmic of glucose regulated protein 78 (GRP78), X box-binding protein-1 (XBP-1), activating transcription factor-6 (ATF-6), C/EBP-homologous protein (CHOP), metalloprotease-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), Bcl-2 associated X protein (Bax), and porcineB-cellleukemia/lymphoma-2 (Bcl-2) in brain tissues. Reverse transcription polymerase chain reaction (RT-PCR) and Quantitative PCR (Q-PCR) were applied to examine vascular endothelial growth factor (VEGF) and N-methyl-d-aspartate receptors (NMDAR1) mRNA levels. RESULTS CX, CS and their combination (XS) could reduce cerebral ischemia deficits and infarct size of MCAO rats. They increased SOD, CAT and GSH-Px activities, and reduced MDA and LPO levels in serum, markedly. A significant decrease of endoplasmic reticulum stress-related factors PERK, XBP-1, ATF-6 and CHOP protein expression levels while an increase of GRP78 and MVD expression by the treatment of CX, CS and XS. It could also be observed that their treatment could reduce apoptotic damage of brain tissues by up-regulating Bax level and down-regulating Bcl-2 level. Furthermore, the levels of MMP-9 and PAI-1 in serum and tissues of rats were down-regulated remarkably while TIMP-1 and PA levels were up-regulated. VEGF mRNA level was up-regulated dramatically whereas NMDAR1 was reduced. Importantly, the combination of CX and CS, namely XS, has a more meaningful improvement on focal cerebral ischemic than CX or CS alone. CONCLUSION All these revealed that the combined XS exerted more remarkable protective effects than alone. XS could inhibit neuronal apoptosis by attenuating ER-stress-dependent apoptotic signaling and protected the blood-brain barrier. These findings might supply beneficial hints for the synergy of CX and CS, and provide the basis for rationality of XS preparation and deserve further clinical investigations.


International Immunopharmacology | 2015

Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway.

Shumin Ding; Xuefeng Hou; Jiarui Yuan; Xiaobin Tan; Juan Chen; Nan Yang; Yi Luo; Ziyu Jiang; Ping Jin; Zibo Dong; Liang Feng; Xiaobin Jia

Cigarette smoke is the leading cause of the development of various lung diseases including lung cancer through triggering oxidant stress and inflammatory responses which contributed to the lesions of normal human bronchial epithelial (NHBE) cell. Wedelolactone (WEL), a natural compound from Eclipta prostrata L., has been found to possess the inhibitive effects on the proliferation and growth of cancers. In the present study, we investigated the effects of WEL on NHBE cell injury induced by cigarette smoke extract (CSE) in vitro. It showed that the pretreatment WEL (2.5-20μM) resulted in a significant protective effect on 10% CSE-induced cell death in NHBE cells. The pretreatment with WEL dose-dependently and significantly reversed the activities of SOD, CAT, GSH and the level of MDA to normal level. We also found that the protein expression levels of COX-2 and ICAM-1 which are related to inflammatory response were remarkably reduced by WEL compared with 10% CSE treatment. Additionally, WEL also reduced the expressions of antioxidases including NAD(P)H dehydrogenase:Quinone 1 (NQO1) and heme oxygenase-1 (HO-1). Moreover, Nrf2 inhibitor all-trans-retinoic acid (ATRA) decreased remarkably their expressions. These results suggest that WEL protects NHBE cell against CSE-induced injury through modulating Nrf2 pathway. Our study indicates that WEL may be a new potential protective agent against CSE-induced lung injury.


Integrative Cancer Therapies | 2017

Anti-inflammatory Effects of Phyllanthus emblica L on Benzopyrene-Induced Precancerous Lung Lesion by Regulating the IL-1β/miR-101/Lin28B Signaling Pathway

Chengcheng Wang; Jiarui Yuan; Chun-fei Wang; Nan Yang; Juan Chen; Dan Liu; Jie Song; Liang Feng; Xiaobin Tan; Xiaobin Jia

Background. Phyllanthus emblica L (PEL), a well-known medical plant, has been used in Asian countries for a long time. Increasing evidence suggests that it can prevent the tumorigenesis of cancer associated with nonresolving inflammation. However, the possible anti-inflammatory mechanism responsible for preventing tumorigenesis of precancerous lung lesions is not well elucidated. Materials and methods. Male A/J mice were randomly divided into 5 groups with 10 mice in each group: (1) blank group (saline), (2) benzo(a)pyrene [B(a)P] group, (3) and (4) B(a)P + PEL (5 g/kg/d, 10 g/kg/d, administered by gavage), (5) B(a)P + celecoxib (30 mg/kg/d, administered by gavage). Nodes on the lung surface were observed and calculated. The levels of macrophage inflammatory protein (MIP-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA) kits. Cyclo-oxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-α), IL-1β, miR-101, and Lin28B protein levels were evaluated by immunohistochemistry and Western blotting. Results. PEL extract treatment significantly reduced the number of nodes on the lung surface and attenuated B(a)P-induced levels of proinflammatory cytokines MIP-2, TNF-α, IL-6, and IL-1β in lung tissue. The protein expressions of COX-2 and HIF-α were significantly decreased by the treatment of PEL. In addition, both PEL extract and celecoxib markedly upregulate the expression of miR-101 while downregulating IL-1β and Lin28B levels. Conclusion. Our study indicated that treatment with PEL extract can not only protect the lung from inflammatory injury but effectively prevent precancerous lung lesions through regulating the IL-1β/miR-i101/Lin28B signaling pathway.


Drug Delivery | 2017

Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles

E. Sun; Zhenhai Zhang; Jing Wang; Lei Yang; Li Cui; Zhongcheng Ke; Xiaobin Tan; Xiaobin Jia; Huixia Lv

Abstract The aim of this study was to establish a paclitaxel (PTX)-loaded mixed micelle delivery system (PTX-TP-M) with vitamin E-TPGS (TPGS) and Plasdone®S-630 Copovidone (PVPS630) as carriers to improve the solubility, oral absorption, and anti-tumor activity of PTX against lung cancer. In this study, PTX-TP-M was prepared using the ethanol thin-film dispersion method followed by characterization of the binary mixed micelles system. The average size of the PTX-TP-M was 83.5 ± 1.8 nm with a polydispersity index of 0.265 ± 0.007 and the drug loading (DL%) and entrapment efficiency (EE%) were 3.09 ± 0.09% and 95.67 ± 2.84%, respectively, which contributed to a high solubility of PTX about 24947-fold increase in water (4.78 ± 0.14 mg/mL). In addition, TEM analysis showed that the PTX-TP-M appeared spherical in structure and was well dispersed without aggregation and adhesion. In vitro release studies showed that the PTX-TP-M displayed a sustained release compared to free PTX in the dialysis bag. The efflux ratio of PTX reduced from 44.83 to 3.52 when formulated as PTX-TP-M; a 92.15% reduction, studied using the Caco-2 monolayer model. The oral bioavailability of PTX also improved by 4.35-fold, suggesting that PTX-TP-M can markedly promote the absorption in the gastrointestinal tract. Using in vitro MTT assays, it was observed that cytotoxicity was markedly increased, and IC50 values of PTX-TP-M (3.14 ± 0.85 and 8.28 ± 1.02 μg/mL) were lower than those of PTX solution (5.21 ± 0.93 and 14.53 ± 1.96 μg/mL) in A549 and Lewis cell, respectively. In vivo anti-tumor studies showed that PTX-TP-M achieved higher anti-tumor efficacy compared with PTX in Lewis bared C57BL/6 mice. Furthermore, a gastrointestinal safety assay also proved the safety of PTX-TP-M. All results demonstrated that the PTX-TP-M exhibited great potential for delivering PTX with increased solubility, oral bioavailability, and anti-cancer activity and this binary mixed micelles drug delivery system has potential to be used clinically.


Journal of Ethnopharmacology | 2017

Polysaccharides from Epimedium koreanum Nakai with immunomodulatory activity and inhibitory effect on tumor growth in LLC-bearing mice

Chengcheng Wang; Liang Feng; Jiayan Su; Li Cui; Dan Liu; Jun Yan; Chuanlin Ding; Xiaobin Tan; Xiaobin Jia

ETHNOPHARMACOLOGICAL RELEVANCE Epimedium koreanum Nakai is documented as tonic herbal in China for over a thousand years and has the potential to enhance the bodys immunity according to the theory of traditional Chinese medicine. Polysaccharides are one of the most important effective compounds in Epimedium koreanum Nakai. Accumulating evidence indicated polysaccharides derived from traditional Chinese medicine have potent immune-enhancing properties and relatively nontoxic effects in cancer treatment. However, information about immunological regulation in tumor of Epimedium koreanum Nakai polysaccharides is limited and the reports of purification, characterization of polysaccharides have remained less. The purpose of our study was to further investigate the active polysaccharides from Epimedium koreanum Nakai by evaluating the immune-regulation activities in tumor-bearing mice and provide reasonable explanation for traditional application. MATERIALS AND METHODS We firstly purified Epimedium koreanum polysaccharide (EPS) from crude extracts and evaluated EPS in vitro using immunological experiments including maturation and Ag presentation function of DCs, CD4 T-cell differentiation and secretion of anti-cancer cytokines. In LLC-bearing mice model, we investigated its antitumor activities through evaluation of tumor cell proliferative activity, calculation of immune organ indexes and relative host immune system function tests. RESULTS Results showed that EPS (180 × 104Da) was composed of mannose (Man), rhamnose (Rha), glucuronic acid (GlcUA), galactosamine (GalN), glucose (Glc), galactose (Gal), arabinose (Ara) and fructose (Fuc). Chemical composition assay indicated EPS was a fraction with 28.20% uronic acid content. FT-IR suggested the presence of pyraoid ring in EPS and SEM displayed smooth surface embedded by several pores. Moreover, Our study suggested EPS could remarkably stimulate macrophages to secrete substantial anti-cancer cytokines and promote maturation as well as Ag presentation function of DCs. Strikingly, CD4 T-cell differentiation and increased INF-γ production stimulated by EPS-activated macrophages were observed in the research. Furthermore, EPS exhibited prominent antitumor activities through regulating host immune system function in LLC-bearing mice. Taken together, experimental findings suggested EPS could be regarded as a potential immune-stimulating modifier for cancer therapy. CONCLUSION Our studies demonstrated the polysaccharide (180 × 104Da) purified from Epimedium koreanum Nakai could promote maturation and Ag presentation function of DCs, increase the level of immunomodulatory cytokines and activate CD4 T-cell differentiation. Furthermore, it may inhibit the tumor growth in LLC-bearing mice through regulating host immune system function.


Frontiers in Pharmacology | 2017

Alisol A 24-Acetate and Alisol B 23-Acetate Induced Autophagy Mediates Apoptosis and Nephrotoxicity in Human Renal Proximal Tubular Cells

Chunfei Wang; Liang Feng; Liang Ma; Haifeng Chen; Xiaobin Tan; Xuefeng Hou; Jie Song; Li Cui; Dan Liu; Juan Chen; Nan Yang; Jing Wang; Ying Liu; Bingjie Zhao; Gang Wang; Yuanli Zhou; Xiaobin Jia

Two natural compounds alisol A 24-acetate (24A) and alisol B 23-acetate (23B) are abundant in Rhizoma alismatis. In the present study, we evaluated the induction of 24A and 23B on apoptosis and possible nephrotoxicity of human renal proximal tubular (HK-2) cells by activating autophagy and also explored its regulation on PI3K/Akt/mTOR signaling pathway. Presently, Clusterin, Kim-1, and TFF-3 were considered to be new bioindicators of nephrotoxicity. Interestingly, the protein expression and mRNA levels of Clusterin, Kim-1 and TFF-3 could be significantly increased by 23B and 24A in vivo and in vitro. Furthermore, cell apoptosis could be triggered by 23B and 24A via significantly decreasing the protein expression and mRNA levels of Bcl-2 and Bcl-xl. Autophagy of HK-2 cells could be induced by both 23B and 24A via significantly enhancing the ratio of LC3II/LC3I, the protein expression of Beclin-1 as well as the mRNA levels of LC3 and Beclin-1. Meanwhile, PI3K/Akt/mTOR signaling pathway could be inhibited by these two compounds. An autophagy inhibitor, 3-methyladenine, could partially reverse cell viability and conversely change the ratio of LC3II/LC3I and the protein expression of Bcl-2 and Kim-1. Thus this study helped to understand that 23B and 24A induced autophagy resulted in apoptosis and nephrotoxicity through inhibiting PI3K/Akt/mTOR signaling pathway, facilitating further studies for nephrotoxicity induced by these two compounds and could be beneficial for safe use of Rhizoma alismatis in clinic.


Frontiers in Pharmacology | 2018

Autophagy Flux Contributes to Regulation of Components of Eclipta prostrata L. on Cigarette Smoking-Induced Injury of Bronchial Epithelial Cells

Shumin Ding; Xuefeng Hou; Gang Wang; Huihui Qiu; Ying Liu; Yuanli Zhou; Mei Du; Xiaobin Tan; Jie Song; Yingjie Wei; Luan Shu; Zhiyong Li; Liang Feng; Xiaobin Jia

Excessive autophagy plays a crucial role in cigarette smoking extract (CSE)-induced inflammation response and oxidative damage of respiratory epithelial cells. The components from Eclipta prostrata L. (CCE) have been shown to be beneficial for CSE-induced epithelial cells injury. However, whether its protection on CSE-stress injury is related to its regulation on autophagy remains still unclear. In this study, CCE, containing mainly wedelolactone of 45.88% and demethylwedelolactone of 23.74%, could improve significantly 10%CSE-induced cell viability of normal human bronchial epithelial (NHBE) cells using CCK-8 kit. We revealed that CCE could remarkably increase autophagic factors Beclin-1, Atg5, ATF4 proteins expression levels and the transformation of LC3-I to LC3-II. Additionally, CCE up-regulated significantly p-p16 and p-p21 phosphorylation levels whereas down-regulated p-p53 in NHBE cells. The changes of typical autolysosom and representative autophagosome in the presence of CCE or/and autophagy inhibitor chloroquine (CQ) were also observed by transmission electron microscopy. These data demonstrated that CCE reduced CSE-induced autophagy flux activation in NHBE cells. The blockade of CCE on autophagy flux contributes to its protection against CSE-induced NHBE cells damage, and CCE is promising to be combination therapeutic molecules to excessive autophagic damage in respiratory diseases.


Environmental Toxicology | 2018

Regulation of Eclipta prostrata L. components on cigarette smoking-induced autophagy of bronchial epithelial cells via keap1-Nrf2 pathway

Shumin Ding; Xuefeng Hou; Fujing Wang; Gang Wang; Xiaobin Tan; Ying Liu; Yuanli Zhou; Huihui Qiu; E. Sun; Nan Jiang; Zihao Li; Jie Song; Liang Feng; Xiaobin Jia

Cigarette smoking extract (CSE)‐induced autophagic injury has been regarded as an important contributor to the pathogenesis of lung cancer. We previously found that Eclipta prostrata L. component (CCE) reduced CSE‐induced bronchial epithelial cells damage. However, the mechanism remains unknown. Human normal bronchial epithelial cells (NHBE) were exposed to CSE to establish stress model. Nrf2‐siRNA and Keap1‐siRNA transfection were performed. mRFP‐GFP‐LC3 dual fluorescence and transmission electron microscopy were used to observe the autophagic characteristics. CCE prevented CSE‐induced Nrf2 transfer into cytoplasm and up‐regulated Keap1 level of NHBE cells. Furthermore, CCE significantly increased p‐p16, p‐p21 and p‐p53 phosphorylation levels in Nrf2‐siRNA‐ or Keap1‐siRNA‐transfected cells. As demonstrated by transmission electron microscopy and mRFP‐GFP‐LC3 dual fluorescence assays, CCE mitigated autophagic injury, and also down‐regulated autophagy‐related Beclin‐1, LC3II/LC3I ratio, Atg5 and ATF4 levels. Our findings showed the attenuation of CCE on CSE‐induced NHBE cells injury was associated with Nrf‐2‐mediated oxidative signaling pathway.


Biomedicine & Pharmacotherapy | 2018

Research on the pharmacodynamics and mechanism of Fraxini Cortex on hyperuricemia based on the regulation of URAT1 and GLUT9

Yuanli Zhou; Xuanguo Zhang; Chao Li; Xin Yuan; Lihua Han; Zheng Li; Xiaobin Tan; Jie Song; Gang Wang; Xiaobin Jia; Liang Feng; Xiting Qiao; Jiping Liu

Fraxini Cortex (also known as Qinpi, QP) has been used for the treatment of hyperuricemia with a significant difference on efficacy of QP from different regions. However, it`s still unknown whether proportion of components is the key and why same kind of herbs have different therapeutic effects. In this study, different sources of QP were collected from Shaanxi Qinpi extracts (SQPE), Henan Qinpi extracts (HQPE), Hebei Qinpi extracts (GQPE) provinces in China. Rat model of hyperuricemia with hypoxanthine combined with potassium oxonate were established to determine the levels of blood urea nitrogen (BUN), serum uric acid (SUA), urine uric acid (UUA) and creatinine (Cr). Hematoxylin-eosin staining (H&E) and Periodic Acid-Schiff staining (PAS) were performed for renal pathology while Western blot analysis and real-time PCR analysis for proteins and mRNA expression levels. High-performance liquid chromatograph (HPLC) was used for components and composition analysis. Our results demonstrated that QPE from different regions could alleviate hyperuricemia via increasing significantly the SCr and BUN levels whereas decreasing markedly UCr, SUA and UUA levels. Additionally, QPE could also improve the pathological changes of the kidneys. The protein and mRNA levels of urate reabsorption transporter 1 (URAT1) and glucose transporter 9 (GLUT9) were down-regulated by QPE treatment. SQPE hold a better activity on improving hyperuricemia and regulating URAT1 and GLUT9. HPLC analysis showed that the proportion of four components aesculin, aesculetin, fraxin, fraxetin were 9.002: 0.350: 8.980: 0.154 (SQPE); 0.526: 0.164: 7.938: 0.102 (HQPE); 12.022: 1.65: 0.878: 1.064 (GQPE). These data indicate that this proportion of effective components may be an important factor for efficacy of QP and had implications for the treatment of hyperuricemia.

Collaboration


Dive into the Xiaobin Tan's collaboration.

Top Co-Authors

Avatar

Liang Feng

Nanjing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiaobin Jia

Nanjing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Jie Song

Nanjing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Juan Chen

Nanjing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Gang Wang

Anhui University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Nan Yang

Nanjing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Xuefeng Hou

Anhui University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Chun-fei Wang

Anhui University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

Nanjing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Junfei Gu

Nanjing University of Chinese Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge