Xiaochen Bo
National University of Defense Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaochen Bo.
PLOS ONE | 2012
Hebing Chen; Yao Tian; Wenjie Shu; Xiaochen Bo; Shengqi Wang
Chromatin insulators are DNA elements that regulate the level of gene expression either by preventing gene silencing through the maintenance of heterochromatin boundaries or by preventing gene activation by blocking interactions between enhancers and promoters. CCCTC-binding factor (CTCF), a ubiquitously expressed 11-zinc-finger DNA-binding protein, is the only protein implicated in the establishment of insulators in vertebrates. While CTCF has been implicated in diverse regulatory functions, CTCF has only been studied in a limited number of cell types across human genome. Thus, it is not clear whether the identified cell type-specific differences in CTCF-binding sites are functionally significant. Here, we identify and characterize cell type-specific and ubiquitous CTCF-binding sites in the human genome across 38 cell types designated by the Encyclopedia of DNA Elements (ENCODE) consortium. These cell type-specific and ubiquitous CTCF-binding sites show uniquely versatile transcriptional functions and characteristic chromatin features. In addition, we confirm the insulator barrier function of CTCF-binding and explore the novel function of CTCF in DNA replication. These results represent a critical step toward the comprehensive and systematic understanding of CTCF-dependent insulators and their versatile roles in the human genome.
Nucleic Acids Research | 2011
Wenjie Shu; Hebing Chen; Xiaochen Bo; Shengqi Wang
To understand the molecular mechanisms that underlie global transcriptional regulation, it is essential to first identify all the transcriptional regulatory elements in the human genome. The advent of next-generation sequencing has provided a powerful platform for genome-wide analysis of different species and specific cell types; when combined with traditional techniques to identify regions of open chromatin [DNaseI hypersensitivity (DHS)] or specific binding locations of transcription factors [chromatin immunoprecipitation (ChIP)], and expression data from microarrays, we become uniquely poised to uncover the mysteries of the genome and its regulation. To this end, we have performed global meta-analysis of the relationship among data from DNaseI-seq, ChIP-seq and expression arrays, and found that specific correlations exist among regulatory elements and gene expression across different cell types. These correlations revealed four distinct modes of chromatin domain structure reflecting different functions: repressive, active, primed and bivalent. Furthermore, CCCTC-binding factor (CTCF) binding sites were identified based on these integrative data. Our findings uncovered a complex regulatory process involving by DNaseI HS sites and histone modifications, and suggest that these dynamic elements may be responsible for maintaining chromatin structure and integrity of the human genome. Our integrative approach provides an example by which data from diverse technology platforms may be integrated to provide more meaningful insights into global transcriptional regulation.
BMC Bioinformatics | 2006
Wenjie Shu; Xiaochen Bo; Rujia Liu; Dongsheng Zhao; Zhiqiang Zheng; Shengqi Wang
BackgroundThe diverse functions of ncRNAs critically depend on their structures. Mutations in ncRNAs disrupting the structures of functional sites are expected to be deleterious. RNA deleterious mutations have attracted wide attentions because some of them in cells result in serious disease, and some others in microbes influence their fitness.ResultsThe RDMAS web server we describe here is an online tool for evaluating structural deleteriousness of single nucleotide mutation in RNA genes. Several structure comparison methods have been integrated; sub-optimal structures predicted can be optionally involved to mitigate the uncertainty of secondary structure prediction. With a user-friendly interface, the web application is easy to use. Intuitive illustrations are provided along with the original computational results to facilitate quick analysis.ConclusionRDMAS can be used to explore the structure alterations which cause mutations pathogenic, and to predict deleterious mutations which may help to determine the functionally critical regions. RDMAS is freely accessed via http://biosrv1.bmi.ac.cn/rdmas.
BMC Bioinformatics | 2008
Wenjie Shu; Xiaochen Bo; Zhiqiang Zheng; Shengqi Wang
BackgroundDepending on their specific structures, noncoding RNAs (ncRNAs) play important roles in many biological processes. Interest in developing new topological indices based on RNA graphs has been revived in recent years, as such indices can be used to compare, identify and classify RNAs. Although the topological indices presented before characterize the main topological features of RNA secondary structures, information on RNA structural details is ignored to some degree. Therefore, it is necessity to identify topological features with low degeneracy based on complete and fine-grained RNA graphical representations.ResultsIn this study, we present a complete and fine scheme for RNA graph representation as a new basis for constructing RNA topological indices. We propose a combination of three vertex-weighted element-contact graphs (ECGs) to describe the RNA element details and their adjacent patterns in RNA secondary structure. Both the stem and loop topologies are encoded completely in the ECGs. The relationship among the three typical topological index families defined by their ECGs and RNA secondary structures was investigated from a dataset of 6,305 ncRNAs. The applicability of topological indices is illustrated by three application case studies. Based on the applied small dataset, we find that the topological indices can distinguish true pre-miRNAs from pseudo pre-miRNAs with about 96% accuracy, and can cluster known types of ncRNAs with about 98% accuracy, respectively.ConclusionThe results indicate that the topological indices can characterize the details of RNA structures and may have a potential role in identifying and classifying ncRNAs. Moreover, these indices may lead to a new approach for discovering novel ncRNAs. However, further research is needed to fully resolve the challenging problem of predicting and classifying noncoding RNAs.
BMC Evolutionary Biology | 2007
Wenjie Shu; Xiaochen Bo; Ming Ni; Zhiqiang Zheng; Shengqi Wang
BackgroundRobustness is a fundamental property of biological systems and is defined as the ability to maintain stable functioning in the face of various perturbations. Understanding how robustness has evolved has become one of the most attractive areas of research for evolutionary biologists, as it is still unclear whether genetic robustness evolved as a direct consequence of natural selection, as an intrinsic property of adaptations, or as congruent correlate of environment robustness. Recent studies have demonstrated that the stem-loop structures of microRNA (miRNA) are tolerant to some structural changes and show thermodynamic stability. We therefore hypothesize that genetic robustness may evolve as a correlated side effect of the evolution for environmental robustness.ResultsWe examine the robustness of 1,082 miRNA genes covering six species. Our data suggest the stem-loop structures of miRNA precursors exhibit a significantly higher level of genetic robustness, which goes beyond the intrinsic robustness of the stem-loop structure and is not a byproduct of the base composition bias. Furthermore, we demonstrate that the phenotype of miRNA buffers against genetic perturbations, and at the same time is also insensitive to environmental perturbations.ConclusionThe results suggest that the increased robustness of miRNA stem-loops may result from congruent evolution for environment robustness. Potential applications of our findings are also discussed.
Scientific Reports | 2015
Hao Li; Hebing Chen; Feng Liu; Chao Ren; Shengqi Wang; Xiaochen Bo; Wenjie Shu
Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy.
Nucleic Acids Research | 2007
Wenjie Shu; Xiaochen Bo; Zhiqiang Zheng; Shengqi Wang
Biological robustness, defined as the ability to maintain stable functioning in the face of various perturbations, is an important and fundamental topic in current biology, and has become a focus of numerous studies in recent years. Although structural robustness has been explored in several types of RNA molecules, the origins of robustness are still controversial. Computational analysis results are needed to make up for the lack of evidence of robustness in natural biological systems. The RNA structural robustness evaluator (RSRE) web server presented here provides a freely available online tool to quantitatively evaluate the structural robustness of RNA based on the widely accepted definition of neutrality. Several classical structure comparison methods are employed; five randomization methods are implemented to generate control sequences; sub-optimal predicted structures can be optionally utilized to mitigate the uncertainty of secondary structure prediction. With a user-friendly interface, the web application is easy to use. Intuitive illustrations are provided along with the original computational results to facilitate analysis. The RSRE will be helpful in the wide exploration of RNA structural robustness and will catalyze our understanding of RNA evolution. The RSRE web server is freely available at http://biosrv1.bmi.ac.cn/RSRE/ or http://biotech.bmi.ac.cn/RSRE/.
Journal of Biotechnology | 2010
Wenjie Shu; Ming Liu; Hebing Chen; Xiaochen Bo; Shengqi Wang
RNA molecules play vital informational, structural, and functional roles in molecular biology, making them ideal targets for synthetic biology. However, several challenges remain for engineering novel allosteric RNA molecules, and the development of efficient computational design techniques is vitally needed. Here we describe the development of Allosteric RNA Designer (ARDesigner), a user-friendly and freely available web-based system for allosteric RNA design that incorporates mutational robustness in the design process. The system output includes detailed design information in a graphical HTML format. We used ARDesigner to engineer a temperature-sensitive AR, and found that the resulting design satisfied the prescribed properties/input. ARDesigner provides a simple means for researchers to design allosteric RNAs with specific properties. With its versatile framework and possibilities for further enhancement, ARDesigner may serve as a useful tool for synthetic biologists and therapeutic design. ARDesigner and its executable version are freely available at http://biotech.bmi.ac.cn/ARDesigner.
Journal of Molecular Evolution | 2008
Wenjie Shu; Ming Ni; Xiaochen Bo; Zhiqiang Zheng; Shengqi Wang
Genetic robustness, insensitivity of the phenotype facing genetic mutations, is a fundamental and ubiquitously observed property of biological systems. In this study, we investigate the genetic robustness of the structural elements within native miRNA genes on a genome-wide scale. MicroRNAs (miRNAs) are a large family of endogenous noncoding RNAs that regulate gene expression at the posttranscriptional level. We examine the neutrality of the structural element in 1082 native pre-miRNAs from six species and demonstrate that the structural elements in native pre-miRNAs exhibit a significantly higher level of genetic robustness in comparison with structural elements within random pseudo pre-miRNAs. Hence, this excess robustness of structural elements in pre-miRNAs goes beyond the intrinsic robustness of the stem-loop structure. Furthermore, we show that it is not a by-product of a base composition bias. Interestingly, our data also demonstrate a difference in increased levels of average neutrality between structural elements. Remarkably, differential genetic robustness between structural elements is observed in both native and pseudo pre-miRNAs. Our results are much in agreement with previous experimental observations, and suggest that the genetic robustness of secondary structural elements in native pre-miRNAs, under different evolutionary selection pressures, may evolve due to its own selective advantage.
BMC Evolutionary Biology | 2010
Ming Ni; Wenjie Shu; Xiaochen Bo; Shengqi Wang; Songgang Li
BackgroundPrevious studies have shown that microRNA precursors (pre-miRNAs) have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA) and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear.ResultsWe investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability.ConclusionsWe proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were also detected in conserved pre-miRNAs.