Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaochen Yuan is active.

Publication


Featured researches published by Xiaochen Yuan.


Molecular Plant Pathology | 2015

Derivative of plant phenolic compound inhibits the type III secretion system of Dickeya dadantii via HrpX/HrpY two-component signal transduction and Rsm systems.

Yan Li; William Hutchins; Xiaogang Wu; Cuirong Liang; Chengfang Zhang; Xiaochen Yuan; Devanshi Khokhani; Xin Chen; Yizhou Che; Qi Wang; Ching-Hong Yang

The type III secretion system (T3SS) is a major virulence factor in many Gram-negative bacterial pathogens and represents a particularly appealing target for antimicrobial agents. Previous studies have shown that the plant phenolic compound p-coumaric acid (PCA) plays a role in the inhibition of T3SS expression of the phytopathogen Dickeya dadantii 3937. This study screened a series of derivatives of plant phenolic compounds and identified that trans-4-hydroxycinnamohydroxamic acid (TS103) has an eight-fold higher inhibitory potency than PCA on the T3SS of D. dadantii. The effect of TS103 on regulatory components of the T3SS was further elucidated. Our results suggest that TS103 inhibits HrpY phosphorylation and leads to reduced levels of hrpS and hrpL transcripts. In addition, through a reduction in the RNA levels of the regulatory small RNA RsmB, TS103 also inhibits hrpL at the post-transcriptional level via the rsmB-RsmA regulatory pathway. Finally, TS103 inhibits hrpL transcription and mRNA stability, which leads to reduced expression of HrpL regulon genes, such as hrpA and hrpN. To our knowledge, this is the first inhibitor to affect the T3SS through both the transcriptional and post-transcriptional pathways in the soft-rot phytopathogen D. dadantii 3937.


Molecular Plant Pathology | 2017

Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system.

Susu Fan; Fang Tian; Jianyu Li; William Hutchins; Huamin Chen; Fenghuan Yang; Xiaochen Yuan; Zining Cui; Ching-Hong Yang; Chenyang He

The targeting of bacterial type III secretion systems (T3SSs), which are critical virulence factors in most Gram-negative pathogens, is regarded as an alternative strategy for the development of novel anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are two of the most important bacterial pathogens on rice, which cause leaf blight and leaf streak diseases, respectively. To identify potential anti-virulence drugs against these two pathogens, we screened a library of plant phenolic compounds and derivatives for their effects on the Xoo T3SS. Ten of 56 compounds significantly inhibited the promoter activity of a harpin gene, hpa1. These inhibitors were further tested for their impact on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results showed that pretreatment of Xoo with TS006 (o-coumaric acid, OCA), TS010, TS015 and TS018 resulted in significantly attenuated HR without affecting bacterial growth or survival. In addition, Cya translocation assays demonstrated that the translocation of two T3 effectors was suppressed by the four inhibitors. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced by treatment with the four inhibitors, suggesting that expression of the Xoo T3SS was suppressed. The expression of other virulence factors was not suppressed, which indicated possible T3SS-specific inhibition. Finally, we demonstrated that these inhibitors reduced the disease symptoms of Xoo and Xoc on the rice cultivar (Oryza sativa) IR24 to varying extents.


Molecular Plant Pathology | 2016

Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

George W. Sundin; Luisa F. Castiblanco; Xiaochen Yuan; Quan Zeng; Ching-Hong Yang

Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insiders perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host-pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex.


Molecular Plant Pathology | 2016

Bacterial disease management: Challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology Bacterial disease management G. W. SUNDIN et al.

George W. Sundin; Luisa F. Castiblanco; Xiaochen Yuan; Quan Zeng; Ching Hong Yang

Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insiders perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host-pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex.


Environmental Microbiology | 2015

Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours.

Xiaochen Yuan; Devanshi Khokhani; Xiaogang Wu; Fenghuan Yang; Gabriel Biener; Benjamin J. Koestler; Valerica Raicu; Chenyang He; Christopher M. Waters; George W. Sundin; Fang Tian; Ching Hong Yang

Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression.


Molecular Plant Pathology | 2018

A ten gene‐containing genomic island determines flagellin glycosylation: Implication for its regulatory role in motility and virulence of Xanthomonas oryzae pv. oryzae

Chao Yu; Huamin Chen; Fang Tian; Fenghuan Yang; Xiaochen Yuan; Ching-Hong Yang; Chenyang He

Flagellin glycosylation plays a crucial role in flagellar assembly, motility and virulence in several pathogenic bacteria. However, little is known about the genetic determinants and biological functions of flagellin glycosylation in Xanthomonas oryzae pv. oryzae (Xoo), the causal pathogen of bacterial blight of rice. Here, the structure, regulation and functions of a ten-gene cluster gigX (glycosylation island genes of Xoo), which was embedded in a flagellar regulon, were characterized. gigX1 to gigX10 encoded putative enzymes or proteins involved in glycan biosynthesis and transfer, including a nucleotide sugar transaminase, an acyl-carrier protein (ACP), a 3-oxoacyl-ACP synthase, a 3-oxoacyl-ACP reductase, a dehydrogenase, an acetyltransferase, a ring hydroxylating dioxygenase, a hypothetical protein, a methyltransferanse and a glycosyltransferase, respectively. The gigX genes were co-transcribed in an operon and up-regulated by the upstream σ54 factor RpoN2 and transcriptional activator FleQ. In-frame deletion of each gigX gene affected flagellin glycosylation modification, meaning that the unglycosylated flagellin of the mutants was smaller than the glycosylated flagellin of the wild-type. No significant changes in flagellar filament and motility were observed in the ΔgigX mutants, among which only ΔgigX6 displayed increased swimming ability. Importantly, all mutants, except ΔgigX9, showed significantly increased virulence and bacterial growth in the susceptible rice cultivar IR24, and ΔgigX1 and ΔgigX10 showed enhanced type III secretion system (T3SS)-related gene expression. Moreover, the glycosylated flagellin of the wild-type induced higher H2 O2 levels in rice leaves than did the unglycosylated flagellins of ΔgigX1 or ΔgigX10. Taken together, this study reveals that the gigX cluster determines flagellin glycosylation, and implicates the regulatory role of post-translational modification with the glycosylation, acetylation and methylation of flagellin in the regulation of motility and virulence of Xoo.


Frontiers in Microbiology | 2017

Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen Erwinia amylovora

Ravi R. Patel; George W. Sundin; Ching Hong Yang; Jie Wang; Regan B. Huntley; Xiaochen Yuan; Quan Zeng

Erwinia amylovora is a Gram-negative bacterial plant pathogen in the family Enterobacteriaceae and is the causal agent of fire blight, a devastating disease of apple and pear. Fire blight is traditionally managed by the application of the antibiotic streptomycin during bloom, but this strategy has been challenged by the development and spread of streptomycin resistance. Thus, there is an urgent need for effective, specific, and sustainable control alternatives for fire blight. Antisense antimicrobials are oligomers of nucleic acid homologs with antisense sequence of essential genes in bacteria. The binding of these molecules to the mRNA of essential genes can result in translational repression and antimicrobial effect. Here, we explored the possibility of developing antisense antimicrobials against E. amylovora and using these compounds in fire blight control. We determined that a 10-nucleotide oligomer of peptide nucleic acid (PNA) targeting the start codon region of an essential gene acpP is able to cause complete growth inhibition of E. amylovora. We found that conjugation of cell penetrating peptide (CPP) to PNA is essential for the antimicrobial effect, with CPP1 [(KFF)3K] being the most effective against E. amylovora. The minimal inhibitory concentration (MIC) of anti-acpP-CPP1 (2.5 μM) is comparable to the MIC of streptomycin (2 μM). Examination of the antimicrobial mechanisms demonstrated that anti-acpP-CPP1 caused dose-dependent reduction of acpP mRNA in E. amylovora upon treatment and resulted in cell death (bactericidal effect). Anti-acpP-CPP1 (100 μM) is able to effectively limit the pathogen growth on stigmas of apple flowers, although less effective than streptomycin. Finally, unlike streptomycin that does not display any specificity in inhibiting pathogen growth, anti-acpP-CPP1 has more specific antimicrobial effect against E. amylovora. In summary, we demonstrated that PNA–CPP can cause an effective, specific antimicrobial effect against E. amylovora and may provide the basis for a novel approach for fire blight control.


Frontiers in Microbiology | 2018

Development of a method to monitor gene expression in single bacterial cells during the interaction with plants and use to study the expression of the type III secretion system in single cells of Dickeya dadantii in potato

Zhouqi Cui; Xiaochen Yuan; Ching-Hong Yang; Regan B. Huntley; Weimin Sun; Jie Wang; George W. Sundin; Quan Zeng

Dickeya dadantii is a bacterial plant pathogen that causes soft rot disease on a wide range of host plants. The type III secretion system (T3SS) is an important virulence factor in D. dadantii. Expression of the T3SS is induced in the plant apoplast or in hrp-inducing minimal medium (hrp-MM), and is repressed in nutrient-rich media. Despite the understanding of induction conditions, how individual cells in a clonal bacterial population respond to these conditions and modulate T3SS expression is not well understood. In our previous study, we reported that in a clonal population, only a small proportion of bacteria highly expressed T3SS genes while the majority of the population did not express T3SS genes under hrp-MM condition. In this study, we developed a method that enabled in situ observation and quantification of gene expression in single bacterial cells in planta. Using this technique, we observed that the expression of the T3SS genes hrpA and hrpN is restricted to a small proportion of D. dadantii cells during the infection of potato. We also report that the expression of T3SS genes is higher at early stages of infection compared to later stages. This expression modulation is achieved through adjusting the ratio of T3SS ON and T3SS OFF cells and the expression intensity of T3SS ON cells. Our findings not only shed light into how bacteria use a bi-stable gene expression manner to modulate an important virulence factor, but also provide a useful tool to study gene expression in individual bacterial cells in planta.


Molecular Plant Pathology | 2018

Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain: Comparative genomics of Erwinia amylovora

Quan Zeng; Zhouqi Cui; Jie Wang; Kevin L. Childs; George W. Sundin; Daniel R. Cooley; Ching-Hong Yang; Elizabeth Garofalo; Alan Eaton; Regan B. Huntley; Xiaochen Yuan; Neil P. Schultes


Molecular Plant Pathology | 2018

The diguanylate cyclase GcpA inhibits the production of pectate lyases via the H-NS protein and RsmB regulatory RNA in Dickeya dadantii : c-di-GMP regulates pectate lyase in D. dadantii

Xiaochen Yuan; Fang Tian; Chenyang He; Geoffrey B. Severin; Christopher M. Waters; Quan Zeng; Fengquan Liu; Ching-Hong Yang

Collaboration


Dive into the Xiaochen Yuan's collaboration.

Top Co-Authors

Avatar

Ching-Hong Yang

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quan Zeng

Connecticut Agricultural Experiment Station

View shared research outputs
Top Co-Authors

Avatar

Fang Tian

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Ching Hong Yang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jie Wang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Regan B. Huntley

Connecticut Agricultural Experiment Station

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devanshi Khokhani

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge