Xiaochun Long
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaochun Long.
Nature Cell Biology | 2009
Robert D. Bell; Rashid Deane; Nienwen Chow; Xiaochun Long; Abhay P. Sagare; Itender Singh; Jeffrey W. Streb; Huang Guo; Anna Rubio; William E. Van Nostrand; Joseph M. Miano; Berislav V. Zlokovic
Amyloid β-peptide (Aβ) deposition in cerebral vessels contributes to cerebral amyloid angiopathy (CAA) in Alzheimers disease (AD). Here, we report that in AD patients and two mouse models of AD, overexpression of serum response factor (SRF) and myocardin (MYOCD) in cerebral vascular smooth muscle cells (VSMCs) generates an Aβ non-clearing VSMC phenotype through transactivation of sterol regulatory element binding protein-2, which downregulates low density lipoprotein receptor-related protein-1, a key Aβ clearance receptor. Hypoxia stimulated SRF/MYOCD expression in human cerebral VSMCs and in animal models of AD. We suggest that SRF and MYOCD function as a transcriptional switch, controlling Aβ cerebrovascular clearance and progression of AD.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Robert D. Bell; Xiaochun Long; Mingyan Lin; Jan H. Bergmann; Vivek Nanda; Sarah L. Cowan; Qian Zhou; Yu Han; David L. Spector; Deyou Zheng; Joseph M. Miano
Objective—Long noncoding RNAs (lncRNAs) represent a rapidly growing class of RNA genes with functions related primarily to transcriptional and post-transcriptional control of gene expression. There is a paucity of information about lncRNA expression and function in human vascular cells. Thus, we set out to identify novel lncRNA genes in human vascular smooth muscle cells and to gain insight into their role in the control of smooth muscle cell phenotypes. Approach and Results—RNA sequencing (RNA-seq) of human coronary artery smooth muscle cells revealed 31 unannotated lncRNAs, including a vascular cell–enriched lncRNA (Smooth muscle and Endothelial cell–enriched migration/differentiation-associated long NonCoding RNA [SENCR]). Strand-specific reverse transcription polymerase chain reaction (PCR) and rapid amplification of cDNA ends indicate that SENCR is transcribed antisense from the 5′ end of the FLI1 gene and exists as 2 splice variants. RNA fluorescence in situ hybridization and biochemical fractionation studies demonstrate SENCR is a cytoplasmic lncRNA. Consistent with this observation, knockdown studies reveal little to no cis-acting effect of SENCR on FLI1 or neighboring gene expression. RNA-seq experiments in smooth muscle cells after SENCR knockdown disclose decreased expression of Myocardin and numerous smooth muscle contractile genes, whereas several promigratory genes are increased. Reverse transcription PCR and Western blotting experiments validate several differentially expressed genes after SENCR knockdown. Loss-of-function studies in scratch wound and Boyden chamber assays support SENCR as an inhibitor of smooth muscle cell migration. Conclusions—SENCR is a new vascular cell–enriched, cytoplasmic lncRNA that seems to stabilize the smooth muscle cell contractile phenotype.
Journal of Biological Chemistry | 2011
Xiaochun Long; Joseph M. Miano
MicroRNA 143/145 (miR143/145) is restricted to adult smooth muscle cell (SMC) lineages and mediates, in part, the expression of several SMC contractile genes. Although the function of miR143/145 has begun to be elucidated, its transcriptional regulation in response to various signaling inputs is poorly understood. In an effort to define a miR signature for SMC differentiation, we screened human coronary artery SMCs for miRs modulated by TGF-β1, a known stimulus for SMC differentiation. Array analysis revealed a number of TGF-β1-induced miRs, including miR143/145. Validation studies showed that TGF-β1 stimulated miR143/145 expression in a dose- and time-dependent manner. We utilized several chemical inhibitors and found that SB203580, a specific inhibitor of p38MAPK, significantly decreased TGF-β1-induced miR143/145 expression. siRNA studies demonstrated that the effect of TGF-β1 on miR143/145 was dependent upon the myocardin and serum response factor transcriptional switch as well as SMAD4. TGF-β1 stimulated a 580-bp human miR143/145 enhancer, and mutagenesis studies revealed a critical role for both a known CArG box and an adjacent SMAD-binding element for full TGF-β1-dependent activation of the enhancer. Chromatin immunoprecipitation assays documented TGF-β1-mediated enrichment of SMAD3 and SMAD4 binding over the enhancer region containing the SMAD-binding element. Pre-miR145 strongly promoted SMC differentiation, whereas an anti-miR145 partially blocked TGF-β1-induced SMC differentiation. These results demonstrate a dual pathway for TGF-β1-induced transcription of miR143/145, thus revealing a novel mechanism underlying TGF-β1-induced human vascular SMC differentiation.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2008
Xiaochun Long; Robert D. Bell; William T. Gerthoffer; Berislav V. Zlokovic; Joseph M. Miano
Background—Myocardin (Myocd) is a strong coactivator that binds the serum response factor (SRF) transcription factor over CArG elements embedded within smooth muscle cell (SMC) and cardiac muscle cyto-contractile genes. Here, we sought to ascertain whether Myocd-mediated gene expression confers a structural and physiological cardiac or SMC phenotype. Methods and Results—Adenoviral-mediated expression of Myocd in the BC3H1 cell line induces cardiac and SMC genes while suppressing both skeletal muscle markers and cell growth. Immunofluorescence microscopy shows that SRF and a SMC-like cyto-contractile apparatus are elevated with Myocd overexpression. A short hairpin RNA to Srf impairs BC3H1 cyto-architecture; however, cotransduction with Myocd results in complete restoration of the cyto-architecture. Electron microscopic studies demonstrate a SMC ultrastructural phenotype with no evidence for cardiac sarcomerogenesis. Biochemical and time-lapsed videomicroscopy assays reveal clear evidence for Myocd-induced SMC-like contraction. Conclusion—Myocd is sufficient for the establishment of a SMC-like contractile phenotype.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2015
Yuliya Vengrenyuk; Hitoo Nishi; Xiaochun Long; Mireille Ouimet; Nazir Savji; Fernando O. Martinez; Courtney P. Cassella; Kathryn J. Moore; Stephen A. Ramsey; Joseph M. Miano; Edward A. Fisher
Objective— We previously showed that cholesterol loading in vitro converts mouse aortic vascular smooth muscle cells (VSMC) from a contractile state to one resembling macrophages. In human and mouse atherosclerotic plaques, it has become appreciated that ≈40% of cells classified as macrophages by histological markers may be of VSMC origin. Therefore, we sought to gain insight into the molecular regulation of this clinically relevant process. Approach and Results— VSMC of mouse (or human) origin were incubated with cyclodextrin–cholesterol complexes for 72 hours, at which time the expression at the protein and mRNA levels of contractile-related proteins was reduced and of macrophage markers increased. Concurrent was downregulation of miR-143/145, which positively regulate the master VSMC differentiation transcription factor myocardin. Mechanisms were further probed in mouse VSMC. Maintaining the expression of myocardin or miR-143/145 prevented and reversed phenotypic changes caused by cholesterol loading. Reversal was also seen when cholesterol efflux was stimulated after loading. Notably, despite expression of macrophage markers, bioinformatic analyses showed that cholesterol-loaded cells remained closer to the VSMC state, consistent with impairment in classical macrophage functions of phagocytosis and efferocytosis. In apoE-deficient atherosclerotic plaques, cells positive for VSMC and macrophage markers were found lining the cholesterol-rich necrotic core. Conclusions— Cholesterol loading of VSMC converts them to a macrophage-appearing state by downregulating the miR-143/145–myocardin axis. Although these cells would be classified by immunohistochemistry as macrophages in human and mouse plaques, their transcriptome and functional properties imply that their contributions to atherogenesis would not be those of classical macrophages.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Xiaochun Long; Esther E. Creemers; Da-Zhi Wang; Eric N. Olson; Joseph M. Miano
Skeletal and smooth muscle can mutually transdifferentiate, but little molecular insight exists as to how each muscle program may be subverted to the other. The myogenic basic helix–loop–helix transcription factors MyoD and myogenin (Myog) direct the development of skeletal muscle and are thought to be dominant over the program of smooth muscle cell (SMC) differentiation. Myocardin (Myocd) is a serum response factor (SRF) coactivator that promotes SMC differentiation through transcriptional stimulation of SRF-dependent smooth muscle genes. Here we show by lineage-tracing studies that Myocd is expressed transiently in skeletal muscle progenitor cells of the somite, and a majority of skeletal muscle is derived from Myocd-expressing cell lineages. However, rather than activating skeletal muscle-specific gene expression, Myocd functions as a transcriptional repressor of Myog, inhibiting skeletal muscle differentiation while activating SMC-specific genes. This repressor function of Myocd is complex, involving histone deacetylase 5 silencing of the Myog promoter and Myocds physical contact with MyoD, which undermines MyoD DNA binding and transcriptional synergy with MEF2. These results reveal a previously unrecognized role for Myocd in repressing the skeletal muscle differentiation program and suggest that this transcriptional coregulator acts as a bifunctional molecular switch for the smooth versus skeletal muscle phenotypes.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2011
Xiaochun Long; Orazio J. Slivano; Sarah L. Cowan; Mary A. Georger; Ting-Hein Lee; Joseph M. Miano
Objective—Smooth muscle calponin (CNN1) contains multiple conserved intronic CArG elements that bind serum response factor and display enhancer activity in vitro. The objectives here were to evaluate these CArG elements for activity in transgenic mice and determine the effect of human CNN1 on injury-induced vascular remodeling. Methods and Results—Mice carrying a lacZ reporter under control of intronic CArG elements in the human CNN1 gene failed to show smooth muscle cell (SMC)-restricted activity. However, deletion of the orthologous sequences in mice abolished endogenous Cnn1 promoter activity, suggesting their necessity for in vivo Cnn1 expression. Mice carrying a 38-kb bacterial artificial chromosome (BAC) harboring the human CNN1 gene displayed SMC- restricted expression of the corresponding CNN1 protein, as measured by immunohistochemistry and Western blotting. Extensive BAC recombineering studies revealed the absolute necessity of a single intronic CArG element for correct SMC-restricted expression of human CNN1. Overexpressing human CNN1 suppressed neointimal formation following arterial injury. Mice with an identical BAC carrying mutations in CArG elements that inhibit human CNN1 expression showed outward remodeling and neointimal formation. Conclusion—A single intronic CArG element is necessary but insufficient for proper CNN1 expression in vivo. CNN1 overexpression antagonizes arterial injury-induced neointimal formation.
Journal of Biological Chemistry | 2009
Xiaochun Long; Darla L. Tharp; Mary A. Georger; Orazio J. Slivano; Monica Y. Lee; Brian R. Wamhoff; Douglas K. Bowles; Joseph M. Miano
Large conductance calcium-activated potassium (MaxiK) channels play a pivotal role in maintaining normal arterial tone by regulating the excitation-contraction coupling process. MaxiK channels comprise α and β subunits encoded by Kcnma and the cell-restricted Kcnmb genes, respectively. Although the functionality of MaxiK channel subunits has been well studied, the molecular regulation of their transcription and modulation in smooth muscle cells (SMCs) is incomplete. Using several model systems, we demonstrate down-regulation of Kcnmb1 mRNA upon SMC phenotypic modulation in vitro and in vivo. As part of a broad effort to define all functional CArG elements in the genome (i.e. the CArGome), we discovered two conserved CArG boxes located in the proximal promoter and first intron of the human KCNMB1 gene. Gel shift and chromatin immunoprecipitation assays confirmed serum response factor (SRF) binding to both CArG elements. A luciferase assay showed myocardin (MYOCD)-mediated transactivation of the KCNMB1 promoter in a CArG element-dependent manner. In vivo analysis of the human KCNMB1 promoter disclosed activity in embryonic heart and aortic SMCs; mutation of both conserved CArG elements completely abolished in vivo promoter activity. Forced expression of MYOCD increased Kcnmb1 expression in a variety of rodent and human non-SMC lines with no effect on expression of the Kcnma1 subunit. Conversely, knockdown of Srf resulted in decreases of endogenous Kcnmb1. Functional studies demonstrated MYOCD-induced, iberiotoxin-sensitive potassium currents in porcine coronary SMCs. These results reveal the first ion channel subunit as a direct target of SRF-MYOCD transactivation, providing further insight into the role of MYOCD as a master regulator of the SMC contractile phenotype.
Journal of Biological Chemistry | 2011
Wei-Bing Xie; Zuguo Li; Joseph M. Miano; Xiaochun Long; Shi-You Chen
Both TGF-β and myocardin (MYOCD) are important for smooth muscle cell (SMC) differentiation, but their precise role in regulating the initiation of SMC development is less clear. In TGF-β-induced SMC differentiation of pluripotent C3H10T1/2 progenitors, we found that TGF-β did not significantly induce Myocd mRNA expression until 18 h of stimulation. On the other hand, early SMC markers such as SM α-actin, SM22α, and SM calponin were detectable beginning 2 or 4 h after TGF-β treatment. These results suggest that Myocd expression is blocked during the initiation of TGF-β-induced SMC differentiation. Consistent with its endogenous expression, Myocd promoter activity was not elevated until 18 h following TGF-β stimulation. Surprisingly, Smad signaling was inhibitory to Myocd expression because blockade of Smad signaling enhanced Myocd promoter activity. Overexpression of Smad3, but not Smad2, inhibited Myocd promoter activity. Conversely, shRNA knockdown of Smad3 allowed TGF-β to activate the Myocd promoter in the initial phase of induction. Myocd was activated by PI3 kinase signaling and its downstream target Nkx2.5. Interestingly, Smad3 did not affect PI3 kinase activity. However, Smad3 physically interacted with Nkx2.5. This interaction blocked Nkx2.5 binding to the Myocd promoter in the early stage of TGF-β induction, leading to inhibition of Myocd mRNA expression. Moreover, Smad3 inhibited Nkx2.5-activated Myocd promoter activity in a dose-dependent manner. Taken together, our results reveal a novel mechanism for Smad3-mediated inhibition of Myocd in the initiation phase of SMC differentiation.
Physiological Genomics | 2011
Craig C. Benson; Qian Zhou; Xiaochun Long; Joseph M. Miano
Regulatory SNPs (rSNPs) reside primarily within the nonprotein coding genome and are thought to disturb normal patterns of gene expression by altering DNA binding of transcription factors. Nevertheless, despite the explosive rise in SNP association studies, there is little information as to the function of rSNPs in human disease. Serum response factor (SRF) is a widely expressed DNA-binding transcription factor that has variable affinity to at least 1,216 permutations of a 10 bp transcription factor binding site (TFBS) known as the CArG box. We developed a robust in silico bioinformatics screening method to evaluate sequences around RefSeq genes for conserved CArG boxes. Utilizing a predetermined phastCons threshold score, we identified 8,252 strand-specific CArGs within an 8 kb window around the transcription start site of 5,213 genes, including all previously defined SRF target genes. We then interrogated this CArG dataset for the presence of previously annotated common polymorphisms. We found a total of 118 unique CArG boxes harboring a SNP within the 10 bp CArG sequence and 1,130 CArG boxes with SNPs located just outside the CArG element. Gel shift and luciferase reporter assays validated SRF binding and functional activity of several new CArG boxes. Importantly, SNPs within or just outside the CArG box often resulted in altered SRF binding and activity. Collectively, these findings demonstrate a powerful approach to computationally define rSNPs in the human CArGome and provide a foundation for similar analyses of other TFBS. Such information may find utility in genetic association studies of human disease where little insight is known regarding the functionality of rSNPs.