Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaodi Yang is active.

Publication


Featured researches published by Xiaodi Yang.


Journal of the American Chemical Society | 2010

Core-Expanded Naphthalene Diimides Fused with 2-(1,3-Dithiol-2-Ylidene)Malonitrile Groups for High-Performance, Ambient-Stable, Solution-Processed n-Channel Organic Thin Film Transistors

Xike Gao; Chong-an Di; Yunbin Hu; Xiaodi Yang; Hongyu Fan; Feng Zhang; Yunqi Liu; Hongxiang Li; Daoben Zhu

A new class of n-type semiconductors for organic thin film transistors (OTFTs), based on core-expanded naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malonitrile groups, is reported. The first two representatives of these species, derived from long branched N-alkyl chains, have been successfully used as active layers for high-performance, ambient-stable, solution-processed n-channel OTFTs. Their bottom-gate top-contact devices fabricated by spin-coating methods exhibit high electron mobilities of up to 0.51 cm(2) V(-1) s(-1) with current on/off ratios of 10(5)-10(7), and small threshold voltages below 10 V under ambient conditions. As this class of n-type organic semiconductors has relatively low-lying LUMO levels and good film-formation ability, they also displayed good environmental stability even with prolonged exposure to ambient air. Both the device performance and the ambient stability are among the best for n-channel OTFTs reported to date.


Nanotechnology | 2007

Theoretical modelling of carrier transports in molecular semiconductors: molecular design of triphenylamine dimer systems.

Xiaodi Yang; Qikai Li; Zhigang Shuai

Charge transport in molecular systems and biosystems can be different from that in inorganic, rigid semiconductors. The electron-nuclear motion couplings play an important role in the former case. We have developed a theoretical scheme to employ the Marcus electron transfer theory coupled with a direct diabatic dimer model and the Brownian diffusion assumption to predict the carrier mobility for molecular materials. For triphenylamine, a typical molecular transport material, the design strategies regarding the formation a cyclic or a linear dimer are evaluated from theoretical calculations for the carrier mobility. We made a comparison between the mobility and the electrical polarizability. It is found that in the case of triphenylamine dimer, these two quantities have different trends. The fact that the macrocycle possesses higher mobility but lower polarizability than the linear chain is due to the difference in the reorganization energy. The theoretical predicted temperature dependences are analysed within the hopping mechanism. The calculated room-temperature mobilities are in reasonable agreement with experimental values.


Journal of Chemical Physics | 2009

Charge transfer rates in organic semiconductors beyond first-order perturbation: From weak to strong coupling regimes

Guangjun Nan; Linjun Wang; Xiaodi Yang; Zhigang Shuai; Yi Zhao

Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport properties of organic semiconductors. However, quite often the electronic couplings vary several orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical Marcus theory with the first-order perturbative nature. In this work, we employ a generalized nonadiabatic transition state theory (GNTST) [Zhao et al., J. Phys. Chem. A 110, 8204 (2004)], which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid for the case of the coupling <10 meV for quaterthiophene and <5 meV for sexithiophene. It is shown that the present approach can be applied to design organic semiconductors with general electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated hole mobility is about three times as large as that from the semiclassical Marcus theory. The difference arises from the quantum nuclear tunneling and the nonperturbative effects.


Chemical Communications | 2009

Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions.

Shengqing Ye; Ke Gao; Haibo Zhou; Xiaodi Yang; Jie Wu

Palladium-catalyzed tandem reactions of 2-alkenylphenyl-acetylenes with CuCl2 or CuBr2 afforded 3-chloro- or 3-bromo-1-methyleneindenes in good yields; these compounds could be further elaborated via palladium-catalyzed coupling reactions.


Pure and Applied Chemistry | 2008

Organic thin-film transistors of phthalocyanines

Liqiang Li; Qingxin Tang; Hongxiang Li; Wenping Hu; Xiaodi Yang; Zhigang Shuai; Yunqi Liu; Daoben Zhu

Organic thin-film field-effect transistors (OTFTs) are emerging as attractive candidates for low-price, large-area, and flexible circuit applications. A variety of organic compounds have been utilized as active semiconductor materials for OTFTs, among which phthalocyanine compounds have attracted considerable attention owing to their remarkable chemical and thermal stability as well as good field-effect performance. Here, we review recent results on the phthalocyanine-based OTFTs. The correlation between the crystal packing structure and the charge transport property is discussed, and we conclude with a description of the future prospects for phthalocyanine-based OTFTs.


Neuroscience | 2007

Hyperpolarization-activated cation current is involved in modulation of the excitability of rat retinal ganglion cells by dopamine

L. Chen; Xiaodi Yang

Modulation of membrane properties and excitability of retinal ganglion cells (RGCs) by dopamine was investigated in rat retinal slices, using whole cell patch clamp techniques. Application of dopamine (10 microM) caused a small depolarization of the membrane potential, a reduction of the input resistance and a decrease in the number of current-evoked action potentials of RGCs, and these effects were blocked by a D1 antagonist (SCH23390, 10 microM), but not by a D2 antagonist (sulpiride, 10 microM). SKF38393 (10 microM), a D1 agonist, but not quinpirole (10 microM), a D2 agonist, mimicked the effects of dopamine on RGCs. Like dopamine, 8-Br-cAMP, a membrane-permeable analog of cAMP, produced similar changes in the membrane properties and the excitability of RGCs. All these results suggest that these effects of dopamine are likely mediated by D1 receptors. Pre-application of KT5720, an inhibitor of protein kinase A (PKA), blocked the dopamine effects, indicating that the effects were PKA-dependent. Possible involvement of hyperpolarization-activated cation currents (I(h)) in the dopamine effects was tested. Inward currents were induced by voltage steps, with an activation threshold of around -70 mV, in the presence of TTX, Cd(2+), TEA-Cl and 4-AP. These currents, with a reversal potential of -33.2 mV, displayed inward rectification and were blocked by ZD7288, a specific I(h) channel blocker. These results are indicative of the presence of I(h) in rat RGCs. Dopamine increased the amplitude of I(h) and shifted the activation curve of I(h) to a range of more positive potentials. SKF38393 and 8-Br-cAMP increased the amplitude of I(h), which was blocked by KT5720. The dopamine effects were abolished when the preparations were pre-incubated by ZD7288. These data strongly suggest that the dopamine effects on rat RGCs may be, at least in part, mediated by modulation of I(h) through the cAMP- and PKA-dependent pathway.


ACS Applied Materials & Interfaces | 2009

Fused-ring pyrazine derivatives for n-type field-effect transistors.

Haifeng Wang; Yugeng Wen; Xiaodi Yang; Ying Wang; Weiyi Zhou; Shiming Zhang; Xiaowei Zhan; Yunqi Liu; Zhigang Shuai; Daoben Zhu

Three new fused-ring pyrazine derivatives end-functionalized with trifluoromethylphenyl groups have been synthesized. The effect of a fused-ring pyrazine core on the thermal, electronic, optical, thin film morphology, and organic field-effect transistor (OFET) properties was investigated both experimentally and theoretically. Electrochemistry measurements and density functional theory calculations suggest that the pyrazine core plays a significant role in tuning the electron affinities of these compounds. The optical absorption and fluorescence properties are also sensitive to the pyrazine core. The OFET devices based on the fused-ring pyrazine compounds exhibit electron mobilities as high as ca. 0.03 cm(2) V(-1) s(-1) under nitrogen, and their performance is sensitive to the pyrazine core. The larger pyrazine core leads to a lower LUMO level and lower reorganization energy, to more ordered thin film morphology with larger grain size, and finally to higher mobilities.


Neuroscience | 2011

Melatonin inhibits tetraethylammonium-sensitive potassium channels of rod ON type bipolar cells via MT2 receptors in rat retina

Xiaoyu Yang; Yanying Miao; Y. Ping; H.-J. Wu; Xiaodi Yang; Zhongfeng Wang

By challenging specific receptors, melatonin synthesized and released by photoreceptors regulates various physiological functions in the vertebrate retina. Here, we studied modulatory effects of melatonin on K+ currents of rod-dominant ON type bipolar cells (Rod-ON-BCs) in rat retinal slices by patch-clamp techniques. Double immunofluorescence experiments conducted in isolated cell and retinal section preparations showed that the melatonin MT₂ receptor was expressed in somata, dendrites and axon terminals of rat Rod-ON-BCs. Electrophysiologically, application of melatonin selectively inhibited the tetraethylammonium (TEA)-sensitive K+ current component, but did not show any effect on the 4-aminopyridine (4-AP)-sensitive component. Consistent with the immunocytochemical result, the melatonin effect was blocked by co-application of 4-phenyl-2-propionamidotetralin (4-P-PDOT), a specific MT₂ receptor antagonist. Neither protein kinase A (PKA) nor protein kinase G (PKG) seemed to be involved because both the PKA inhibitor Rp-cAMP and the PKG inhibitor KT5823 did not block the melatonin-induced suppression of the K+ currents. In contrast, application of the phospholipase C (PLC) inhibitor U73122 or the protein kinase C (PKC) inhibitor bisindolylmaleimide IV (Bis IV) eliminated the melatonin effect, and when the Ca²+ chelator BAPTA-containing pipette was used, melatonin failed to inhibit the K+ currents. These results suggest that suppression of the TEA-sensitive K+ current component via activation of MT₂ receptors expressed on rat Rod-ON-BCs may be mediated by a Ca²+-dependent PLC/inositol 1,4,5-trisphosphate (IP₃/PKC signaling pathway.


Polymer Chemistry | 2016

Incorporation of benzothiadiazole into the backbone of 1,2,5,6-naphthalenediimide based copolymers, enabling much improved film crystallinity and charge carrier mobility

Zheng Zhao; Zhongli Wang; Congwu Ge; Xu Zhang; Xiaodi Yang; Xike Gao

By incorporating benzothiadiazole units into the main chain of 1,2,5,6-naphthalenediimide (iso-NDI) and thiophene based copolymers, we report herein a new high performance donor–acceptor (D–A) polymer, P(iso-NDI-TBT), with much improved film crystallinity and charge carrier mobility. The optical, electrochemical, and charge transport properties as well as the photovoltaic performance were investigated. Bottom-gate bottom-contact organic field-effect transistors (OFETs) based on the thin films of P(iso-NDI-TBT) show a high hole mobility of up to 0.82 cm2 V−1 s−1, which is a record value for the 1,2,5,6-NDI based polymers. In addition, the photovoltaic performance of P(iso-NDI-TBT) was also studied, affording a power conversion efficiency (PCE) of 1.5% with a high open-circuit voltage (Voc) of 0.9 V. Our work provides important clues for designing high performance D–A polymeric semiconductors and also demonstrates that 1,2,5,6-NDIs are promising building blocks for constructing new polymer semiconductors.


Angewandte Chemie | 2015

Squaramide‐Catalyzed Synthesis of Enantioenriched Spirocyclic Oxindoles via Ketimine Intermediates with Multiple Active Sites

Qiang-Sheng Sun; Hua Zhu; Yong‐Jian Chen; Xiaodi Yang; Xing-Wen Sun; Guo-Qiang Lin

A new method for the construction of five-membered spirocyclic oxindoles is based on a Michael-Mannich cascade reaction of a ketimine intermediated catalyzed by a bifunctional quinine-derived squaramide. The desired products were obtained in excellent yields (up to 94%) and stereoselectivities (up to >20:1 d.r., >99% ee). A scaled-up variant also proceeded smoothly showing that the one-pot reaction might find application in the synthesis of bioactive-compound libraries.

Collaboration


Dive into the Xiaodi Yang's collaboration.

Top Co-Authors

Avatar

Xike Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daoben Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongxiang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunqi Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Congwu Ge

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge