Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaodong Fang is active.

Publication


Featured researches published by Xiaodong Fang.


Genome Research | 2010

De novo assembly of human genomes with massively parallel short read sequencing

Ruiqiang Li; Hongmei Zhu; Jue Ruan; Wubin Qian; Xiaodong Fang; Zhongbin Shi; Yingrui Li; Shengting Li; Gao Shan; Karsten Kristiansen; Songgang Li; Huanming Yang; Jian Wang; Jun Wang

Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.


Nature | 2012

The oyster genome reveals stress adaptation and complexity of shell formation

Guofan Zhang; Xiaodong Fang; Ximing Guo; Li Li; Ruibang Luo; Fei Xu; Pengcheng Yang; Linlin Zhang; Xiaotong Wang; Haigang Qi; Zhiqiang Xiong; Huayong Que; Yinlong Xie; Peter W. H. Holland; Jordi Paps; Yabing Zhu; Fucun Wu; Yuanxin Chen; Jiafeng Wang; Chunfang Peng; Jie Meng; Lan Yang; Jun Liu; Bo Wen; Na Zhang; Zhiyong Huang; Qihui Zhu; Yue Feng; Andrew Mount; Dennis Hedgecock

The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster’s adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.


Nature | 2008

The diploid genome sequence of an Asian individual

Jun Wang; Wei Wang; Ruiqiang Li; Yingrui Li; Geng Tian; Laurie Goodman; Wei Fan; Junqing Zhang; Jun Li; Juanbin Zhang; Yiran Guo; Binxiao Feng; Heng Li; Yao Lu; Xiaodong Fang; Huiqing Liang; Z. Du; Dong Li; Yiqing Zhao; Yujie Hu; Zhenzhen Yang; Hancheng Zheng; Ines Hellmann; Michael Inouye; John E. Pool; Xin Yi; Jing Zhao; Jinjie Duan; Yan Zhou; Junjie Qin

Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual’s genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.


Genome Research | 2009

SNP detection for massively parallel whole-genome resequencing

Ruiqiang Li; Yingrui Li; Xiaodong Fang; Huanming Yang; Jian Wang; Karsten Kristiansen; Jun Wang

Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth.


Science | 2010

Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator.

Roberto Bonasio; Guojie Zhang; Chaoyang Ye; Navdeep S. Mutti; Xiaodong Fang; Nan Qin; Greg Donahue; Pengcheng Yang; Qiye Li; Cai Li; Pei Zhang; Zhiyong Huang; Shelley L. Berger; Danny Reinberg; Jun Wang; Jürgen Liebig

Ant Variation Ants of the same genotype can exhibit numerous phenotypic forms and develop multiple functional castes within a colony. Bonasio et al. (p. 1068) sequenced the genomes of two ant species exhibiting differences in caste development—Camponotus floridanus and Harpegnathos saltator—and used the sequences to compare gene expression and identify differences in epigenetic gene regulation that lead to the phenotypic differences. Ants may offer a model system for studying the role of epigenetics in behavior and development. Comparison reveals the epigenetic controls on caste development in ants. The organized societies of ants include short-lived worker castes displaying specialized behavior and morphology and long-lived queens dedicated to reproduction. We sequenced and compared the genomes of two socially divergent ant species: Camponotus floridanus and Harpegnathos saltator. Both genomes contained high amounts of CpG, despite the presence of DNA methylation, which in non-Hymenoptera correlates with CpG depletion. Comparison of gene expression in different castes identified up-regulation of telomerase and sirtuin deacetylases in longer-lived H. saltator reproductives, caste-specific expression of microRNAs and SMYD histone methyltransferases, and differential regulation of genes implicated in neuronal function and chemical communication. Our findings provide clues on the molecular differences between castes in these two ants and establish a new experimental model to study epigenetics in aging and behavior.


Genome Research | 2010

Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome

Guojie Zhang; Guangwu Guo; Xueda Hu; Yong Zhang; Qiye Li; Ruiqiang Li; Ruhong Zhuang; Zhike Lu; Zengquan He; Xiaodong Fang; Li Chen; Wei Tian; Yong Tao; Karsten Kristiansen; Xiuqing Zhang; Songgang Li; Huanming Yang; Jian Wang; Jun Wang

Understanding the dynamics of eukaryotic transcriptome is essential for studying the complexity of transcriptional regulation and its impact on phenotype. However, comprehensive studies of transcriptomes at single base resolution are rare, even for modern organisms, and lacking for rice. Here, we present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative splicing in the rice transcriptome revealed that alternative cis-splicing occurred in approximately 33% of all rice genes. This is far more than previously reported. In addition, we also identified 234 putative chimeric transcripts that seem to be produced by trans-splicing, indicating that transcript fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell. Taken together, our data provide extensive evidence that transcriptional regulation in rice is vastly more complex than previously believed.


Nature | 2011

Genome sequencing reveals insights into physiology and longevity of the naked mole rat

Eun Bae Kim; Xiaodong Fang; Alexey A. Fushan; Zhiyong Huang; Alexei V. Lobanov; Lijuan Han; Stefano M. Marino; Xiaoqing Sun; Anton A. Turanov; Pengcheng Yang; Sun Hee Yim; Xiang Zhao; Marina V. Kasaikina; Nina Stoletzki; Chunfang Peng; Paz Polak; Zhiqiang Xiong; Adam Kiezun; Yabing Zhu; Yuanxin Chen; Gregory V. Kryukov; Qiang Zhang; Leonid Peshkin; Lan Yang; Roderick T. Bronson; Rochelle Buffenstein; Bo Wang; Changlei Han; Qiye Li; Li Chen

The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the ‘queen’, who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat’s exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.


Nature Genetics | 2012

Whole-genome sequence of Schistosoma haematobium

Neil D. Young; Aaron R. Jex; Bo Li; Shiping Liu; Linfeng Yang; Zijun Xiong; Yingrui Li; Cinzia Cantacessi; Ross S. Hall; Xun Xu; Fangyuan Chen; Xuan Wu; Adhemar Zerlotini; Guilherme Oliveira; Andreas Hofmann; Guojie Zhang; Xiaodong Fang; Yi Kang; Bronwyn E. Campbell; Alex Loukas; Shoba Ranganathan; David Rollinson; Gabriel Rinaldi; Paul J. Brindley; Huanming Yang; Jun Wang; Jian Wang; Robin B. Gasser

Schistosomiasis is a neglected tropical disease caused by blood flukes (genus Schistosoma; schistosomes) and affecting 200 million people worldwide. No vaccines are available, and treatment relies on one drug, praziquantel. Schistosoma haematobium has come into the spotlight as a major cause of urogenital disease, as an agent linked to bladder cancer and as a predisposing factor for HIV/AIDS. The parasite is transmitted to humans from freshwater snails. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall to elicit chronic immune-mediated disease and induce squamous cell carcinoma. Here we sequenced the 385-Mb genome of S. haematobium using Illumina-based technology at 74-fold coverage and compared it to sequences from related parasites. We included genome annotation based on function, gene ontology, networking and pathway mapping. This genome now provides an unprecedented resource for many fundamental research areas and shows great promise for the design of new disease interventions.


Nature Genetics | 2013

Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation

Guangwu Guo; Xiaojuan Sun; Chao Chen; Song Wu; Peide Huang; Zesong Li; Michael Dean; Yi Huang; Wenlong Jia; Quan Zhou; Aifa Tang; Zuoquan Yang; Xianxin Li; Pengfei Song; Xiaokun Zhao; Rui Ye; Shiqiang Zhang; Zhao Lin; Mingfu Qi; Shengqing Wan; Liangfu Xie; Fan Fan; Michael L. Nickerson; Xiangjun Zou; Xueda Hu; Li Xing; Zhaojie Lv; Hongbin Mei; Shengjie Gao; Chaozhao Liang

Bladder cancer is one of the most common cancers worldwide, with transitional cell carcinoma (TCC) being the predominant form. Here we report a genomic analysis of TCC by both whole-genome and whole-exome sequencing of 99 individuals with TCC. Beyond confirming recurrent mutations in genes previously identified as being mutated in TCC, we identified additional altered genes and pathways that were implicated in TCC. Notably, we discovered frequent alterations in STAG2 and ESPL1, two genes involved in the sister chromatid cohesion and segregation (SCCS) process. Furthermore, we also detected a recurrent fusion involving FGFR3 and TACC3, another component of SCCS, by transcriptome sequencing of 42 DNA-sequenced tumors. Overall, 32 of the 99 tumors (32%) harbored genetic alterations in the SCCS process. Our analysis provides evidence that genetic alterations affecting the SCCS process may be involved in bladder tumorigenesis and identifies a new therapeutic possibility for bladder cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization

Cheng Qin; Changshui Yu; Yaou Shen; Xiaodong Fang; Lang Chen; Jiumeng Min; Jiaowen Cheng; Shancen Zhao; Meng Xu; Yong Luo; Yulan Yang; Zhiming Wu; Likai Mao; Haiyang Wu; Changying Ling-Hu; Huangkai Zhou; Haijian Lin; Sandra Isabel González-Morales; Diana Lilia Trejo-Saavedra; Hao Tian; Xin Tang; Maojun Zhao; Zhiyong Huang; Anwei Zhou; Xiaoming Yao; Junjie Cui; Wenqi Li; Zhe Chen; Yongqiang Feng; Yongchao Niu

Significance The two pepper genomes together with 20 resequencing accessions, including 3 accessions that are classified as semiwild/wild, provide a better understanding of the evolution, domestication, and divergence of various pepper species and ultimately, will enhance future genetic improvement of this important worldwide crop. As an economic crop, pepper satisfies people’s spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.

Collaboration


Dive into the Xiaodong Fang's collaboration.

Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Huang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Yabing Zhu

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Guojie Zhang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhiqiang Xiong

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Xuanting Jiang

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Huanming Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yue Feng

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Lijuan Han

Beijing Genomics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge