Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaodong Pang is active.

Publication


Featured researches published by Xiaodong Pang.


Structure | 2011

Automated Prediction of Protein Association Rate Constants

Sanbo Qin; Xiaodong Pang; Huan-Xiang Zhou

The association rate constants (k(a)) of proteins with other proteins or other macromolecular targets are a fundamental biophysical property. Observed rate constants span over ten orders of magnitude, from 1 to 10(10) M(-1)s(-1). Protein association can be rate limited either by the diffusional approach of the subunits to form a transient complex, with near-native separation and orientation but without short-range native interactions, or by the subsequent conformational rearrangement to form the native complex. Our transient-complex theory showed promise in predicting k(a) in the diffusion-limited regime. Here, we develop it into a web server called TransComp (http://pipe.sc.fsu.edu/transcomp/) and report on the servers accuracy and robustness based on applications to over 100 protein complexes. We expect this server to be a valuable tool for systems biology applications and for kinetic characterization of protein-protein and protein-nucleic acid association in general.


ACS Nano | 2013

Molecular Structure of RADA16-I Designer Self-Assembling Peptide Nanofibers

Ashley R. Cormier; Xiaodong Pang; Maxwell I. Zimmerman; Huan-Xiang Zhou; Anant K. Paravastu

The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for (13)C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured (13)C-(13)C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.


Structure | 2015

Two Pathways Mediate Interdomain Allosteric Regulation in Pin1

Jingjing Guo; Xiaodong Pang; Huan-Xiang Zhou

Allostery is an essential means for regulating biomolecular functions and provides unique opportunities for drug design, yet our ability to elucidate allosteric mechanisms remains limited. Here, based on extensive molecular dynamics simulations, we present an atomistic picture of the pathways mediating the allosteric regulation of the PPIase domain of Pin1 by its WW domain. Two pathways jointly propagate the action of substrate-WW binding to produce closure and rigidification of three PPIase catalytic-site loops. One pathway preexists in the apo protein, but remains dormant until substrate-WW binding completes the second. The reduction in conformational entropy and preorganization of the catalytic-site loops observed here may explain why substrate-WW binding enhances ligand affinity and catalytic activity of the PPIase domain and suggest a combination drug therapy for Pin1-related diseases. Whereas the traditional view of allostery has emphasized conformational transition, our study identifies a distinct role of conformational dynamics in eliciting allostery.


PLOS Computational Biology | 2012

A common model for cytokine receptor activation: combined scissor-like rotation and self-rotation of receptor dimer induced by class I cytokine.

Xiaodong Pang; Huan-Xiang Zhou

The precise mechanism by which the binding of a class I cytokine to the extracellular domain of its corresponding receptor transmits a signal through the cell membrane remains unclear. Receptor activation involves a cytokine-receptor complex with a 1∶2 stoichiometry. Previously we used our transient-complex theory to calculate the rate constant of the initial cytokine-receptor binding to form a 1∶1 complex. Here we computed the binding pathway leading to the 1∶2 activation complex. Three cytokine systems (growth hormone, erythropoietin, and prolactin) were studied, and the focus was on the binding of the extracellular domain of the second receptor molecule after forming the 1∶1 complex. According to the transient-complex theory, translational and rotation diffusion of the binding entities bring them together to form a transient complex, which has near-native relative separation and orientation but not the short-range specific native interactions. Subsequently conformational rearrangement leads to the formation of the native complex. We found that the changes in relative orientations between the two receptor molecules from the transient complex to the 1∶2 native complex are similar for the three cytokine-receptor systems. We thus propose a common model for receptor activation by class I cytokines, involving combined scissor-like rotation and self-rotation of the two receptor molecules. Both types of rotations seem essential: the scissor-like rotation separates the intracellular domains of the two receptor molecules to make room for the associated Janus kinase molecules, while the self-rotation allows them to orient properly for transphosphorylation. This activation model explains a host of experimental observations. The transient-complex based approach presented here may provide a strategy for designing antagonists and prove useful for elucidating activation mechanisms of other receptors.


Biophysical Journal | 2011

Rationalizing 5000-Fold Differences in Receptor-Binding Rate Constants of Four Cytokines

Xiaodong Pang; Sanbo Qin; Huan-Xiang Zhou

The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as k(a)=k(a0)exp(-ΔG(el)(∗)/k(B)T) where k(a0) is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (k(a0)) of EPO, IL4, hGH, and PRL were similar (5.2 × 10(5) M(-1)s(-1), 2.4 × 10(5) M(-1)s(-1), 1.7 × 10(5) M(-1)s(-1), and 1.7 × 10(5) M(-1)s(-1), respectively). However, the average electrostatic free energies (ΔG(e1)(∗)) were very different (-4.2 kcal/mol, -2.4 kcal/mol, -0.1 kcal/mol, and -0.5 kcal/mol, respectively, at ionic strength=160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 10(8) M(-1)s(-1), 1.3 × 10(7) M(-1)s(-1), 2.0 × 10(5) M(-1)s(-1), and 7.6 × 10(4) M(-1)s(-1), respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily tuned. Our calculations also reproduced well-observed effects of mutations and ionic strength on the rate constants and produced a set of mutations on the complex of hGH with its receptor that putatively enhances the rate constant by nearly 100-fold through increasing charge complementarity. To quantify charge complementarity, we propose a simple index based on the charge distribution within the binding interface, which shows good correlation with ΔG(e1)(∗). Together these results suggest that protein charges can be manipulated to tune k(a) and control biological function.


Biophysical Journal | 2013

Solid-State NMR Evidence for β-Hairpin Structure within MAX8 Designer Peptide Nanofibers

Sarah R. Leonard; Ashley R. Cormier; Xiaodong Pang; Maxwell I. Zimmerman; Huan-Xiang Zhou; Anant K. Paravastu

MAX8, a designer peptide known to undergo self-assembly following changes in temperature, pH, and ionic strength, has demonstrated usefulness for tissue engineering and drug delivery. It is hypothesized that the self-assembled MAX8 nanofiber structure consists of closed β-hairpins aligned into antiparallel β-sheets. Here, we report evidence from solid-state NMR spectroscopy that supports the presence of the hypothesized β-hairpin conformation within the nanofiber structure. Specifically, our (13)C-(13)C two-dimensional exchange data indicate spatial proximity between V3 and K17, and (13)C-(13)C dipolar coupling measurements reveal proximity between the V3 and V18 backbone carbonyls. Moreover, isotopic dilution of labeled MAX8 nanofibers did not result in a loss of the (13)C-(13)C dipolar couplings, showing that these couplings are primarily intramolecular. NMR spectra also indicate the existence of a minor conformation, which is discussed in terms of previously hypothesized nanofiber physical cross-linking and possible nanofiber polymorphism.


Biophysical Journal | 2015

Disorder-to-Order Transition of an Active-Site Loop Mediates the Allosteric Activation of Sortase A

Xiaodong Pang; Huan-Xiang Zhou

Intrinsically disordered proteins and intrinsically disordered regions are implicated in many biological functions and associated with many diseases, but their conformational characterizations are challenging. The disordered β6/β7 loop of Staphylococcus aureus sortase A is involved in the binding of both sorting signals and calcium. Calcium binding allosterically activates the enzyme, but the detailed mechanism has been unclear. Here we adapted the replica exchange with solute tempering method to sample the conformations of the β6/β7 loop, in apo form and in three liganded forms (bound with a sorting signal or calcium or both). The extensive molecular dynamics simulations yield atomic details of the disordered-to-order transition of the loop and suggest a mechanism for allosteric activation: calcium binding results in partial closure and ordering of the loop, thereby leading to preorganization of the binding pocket for the sorting signal. The approach has general applicability to the study of intrinsically disordered regions.


PLOS Computational Biology | 2012

Prediction and Dissection of Widely-Varying Association Rate Constants of Actin-Binding Proteins

Xiaodong Pang; Kenneth H. Zhou; Sanbo Qin; Huan-Xiang Zhou

Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k a = k a0 , where k a0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k a variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.


PLOS ONE | 2014

Design Rules for Selective Binding of Nuclear Localization Signals to Minor Site of Importin α

Xiaodong Pang; Huan-Xiang Zhou

Selectivity is a critical issue in molecular recognition. However, design rules that underlie selectivity are often not well understood. Here, we studied five classical nuclear localization signals (NLSs) that contain the motif KRx(W/F/Y)xxAF and selectively bind to the minor site of importin α. The selectivity for the minor site is dissected by building structural models for the NLS-importin α complexes and analyzing the positive design and negative design in the NLSs. In our models, the KR residues of the motif occupy the P1’ and P2’ pockets of importin α, respectively, forming hydrogen-bonding and cation-π interactions. The aromatic residue at the P4’ position plays dual roles in the selectivity for the minor site: by forming π-stacking with W357 of importin α to reinforce the minor-site binding; and by clashing with the P5 pocket in the major binding site. The F residue at the P8’ position occupies a deep pocket, providing additional stabilization. The P7’ position sits on a saddle next to the P8’ pocket and hence requires a small residue; the A residue fulfills this requirement. The principal ideas behind these blind predictions turn out to be correct in an evaluation against subsequently available X-ray structures for the NLS-importin α complexes, but some details are incorrect. These results illustrate that the selectivity for the minor site can be achieved via a variety of design rules.


Chemical Reviews | 2018

Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation

Huan-Xiang Zhou; Xiaodong Pang

Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.

Collaboration


Dive into the Xiaodong Pang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanbo Qin

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Ou

Florida State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge