Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaodong Zhu is active.

Publication


Featured researches published by Xiaodong Zhu.


Journal of The American Society of Nephrology | 2014

Downregulation of MicroRNA-30 Facilitates Podocyte Injury and Is Prevented by Glucocorticoids

Junnan Wu; Chunxia Zheng; Yun Fan; Caihong Zeng; Zhaohong Chen; Weisong Qin; Changming Zhang; Wanfen Zhang; Xiao Wang; Xiaodong Zhu; Mingchao Zhang; Ke Zen; Zhihong Liu

MicroRNAs (miRNAs) are essential for podocyte homeostasis, and the miR-30 family may be responsible for this action. However, the exact roles and clinical relevance of miR-30s remain unknown. In this study, we examined the expression of the miR-30 family in the podocytes of patients with FSGS and found that all members are downregulated. Treating cultured human podocytes with TGF-β, LPS, or puromycin aminonucleoside (PAN) also downregulated the miR-30 family. Podocyte cytoskeletal damage and apoptosis caused by treatment with TGF-β or PAN were ameliorated by exogenous miR-30 expression and aggravated by miR-30 knockdown. Moreover, we found that miR-30s exert their protective roles by direct inhibition of Notch1 and p53, which mediate podocyte injury. In rats, treatment with PAN substantially downregulated podocyte miR-30s and induced proteinuria and podocyte injury; however, transfer of exogenous miR-30a to podocytes of PAN-treated rats ameliorated proteinuria and podocyte injury and reduced Notch1 activation. Finally, we demonstrated that glucocorticoid treatment maintains miR-30 expression in cultured podocytes treated with TGF-β, LPS, or PAN and in the podocytes of PAN-treated rats. Glucocorticoid-sustained miR-30 expression associated with reduced Notch1 activation and alleviated podocyte damage. Taken together, these findings demonstrate that miR-30s protect podocytes by targeting Notch1 and p53 and that the loss of miR-30s facilitates podocyte injury. In addition, sustained miR-30 expression may be a novel mechanism underlying the therapeutic effectiveness of glucocorticoids in treating podocytopathy.


Journal of Clinical Investigation | 2015

MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes.

Junnan Wu; Chunxia Zheng; Xiao Wang; Shifeng Yun; Yue Zhao; Lin Liu; Yuqiu Lu; Yuting Ye; Xiaodong Zhu; Changming Zhang; Shaolin Shi; Zhihong Liu

Calcium/calcineurin signaling is critical for normal cellular physiology. Abnormalities in this pathway cause many diseases, including podocytopathy; therefore, understanding the mechanisms that underlie the regulation of calcium/calcineurin signaling is essential. Here, we showed that critical components of calcium/calcineurin signaling, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, are the targets of the microRNA-30 family (miR-30s). We found that these 5 genes are highly expressed as mRNA, but the level of the proteins is low in normal podocytes. Conversely, protein levels were markedly elevated in podocytes from rats treated with puromycin aminonucleoside (PAN) and from patients with focal segmental glomerulosclerosis (FSGS). In both FSGS patients and PAN-treated rats, miR-30s were downregulated in podocytes. In cultured podocytes, PAN or a miR-30 sponge increased TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3 expression; calcium influx; intracellular Ca2+ concentration; and calcineurin activity. Moreover, NFATC3 nuclear translocation, synaptopodin degradation, integrin β3 (ITGB3) activation, and actin fiber loss, which are downstream of calcium/calcineurin signaling, were induced by miR-30 reduction but blocked by the calcineurin inhibitor FK506. Podocyte-specific expression of the miR-30 sponge in mice increased calcium/calcineurin pathway component protein expression and calcineurin activity. The mice developed podocyte foot process effacement and proteinuria, which were prevented by FK506. miR-30s also regulated calcium/calcineurin signaling in cardiomyocytes. Together, our results identify miR-30s as essential regulators of calcium/calcineurin signaling.


Kidney International | 2014

MiR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgA nephropathy

Hao Bao; Hao Chen; Xiaodong Zhu; Minchao Zhang; Genhong Yao; Yusheng Yu; Weisong Qin; Caihong Zeng; Ke Zen; Zhihong Liu

Glomerular endothelial cells (GEnCs) contribute to renal injuries in IgA nephropathy (IgAN). Here we profiled microRNAs (miRNAs) in GEnCs treated with conditioned medium from human mesangial cells in vitro. Levels of miR-223 in GEnCs decreased after incubation with the medium prepared with pIgA from patients with glomerular endothelial proliferation and were also decreased in the glomerular tissues of patients with glomerular endothelial proliferation. Mesangial-derived IL-6 caused miR-223 levels to decrease. The addition of exogenous miR-223 inhibited cell proliferation, ICAM-1 expression, and monocyte adhesion. The NF-κB and STAT3 signaling pathways collaborate during the activation process. MiR-223 mimics inhibited the nuclear localization and DNA binding of p65 and STAT3 but had no effect on the expression of upstream molecules. Instead, importin α4 and α5 (multipurpose nuclear transport receptors), validated as targets of miR-223, were responsible for the nuclear transport of p65 and STAT3. Importin α4 and α5 siRNA inhibited the nuclear localization of p65 and STAT3 and prevented cell proliferation and monocyte adhesion. The level of miR-223 in circulating endothelial cells was decreased and related to the clinical and pathological parameters. Thus, miR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgAN. Monitoring the level of miR-223 in circulating endothelial cells may provide a noninvasive method for evaluating the severity of IgAN.


Diabetes | 2013

Rhein protects pancreatic β-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia

Jing Liu; Zhaohong Chen; Yujing Zhang; Mingchao Zhang; Xiaodong Zhu; Yun Fan; Shaolin Shi; Ke Zen; Zhihong Liu

Rhein, an anthraquinone compound isolated from rhubarb, has been shown to improve glucose metabolism disorders in diabetic mice. The mechanism underlying the protective effect of rhein, however, remains unknown. Here, we demonstrate that rhein can protect the pancreatic β-cells against hyperglycemia-induced cell apoptosis through stabilizing mitochondrial morphology. Oral administration of rhein for 8 or 16 weeks in db/db mice significantly reduced fasting blood glucose (FBG) level and improved glucose tolerance. Cell apoptosis assay using both pancreatic sections and cultured pancreatic β-cells indicated that rhein strongly inhibited β-cell apoptosis. Morphological study showed that rhein was mainly localized at β-cell mitochondria and rhein could preserve mitochondrial ultrastructure by abolishing hyperglycemia-induced mitochondrial fission protein dynamin-related protein 1 (Drp1) expression. Western blot and functional analysis confirmed that rhein protected the pancreatic β-cells against hyperglycemia-induced apoptosis via suppressing mitochondrial Drp1 level. Finally, mechanistic study further suggested that decreased Drp1 level by rhein might be due to its effect on reducing cellular reactive oxygen species. Taken together, our study demonstrates for the first time that rhein can serve as a novel therapeutic agent for hyperglycemia treatment and rhein protects pancreatic β-cells from apoptosis by blocking the hyperglycemia-induced Drp1 expression.


Cell Death and Disease | 2016

GADD45B mediates podocyte injury in zebrafish by activating the ROS-GADD45B-p38 pathway.

Z Chen; Xiaoyang Wan; Qing Hou; Shaolin Shi; Lianhui Wang; P Chen; Xiaodong Zhu; Caihong Zeng; W Qin; Weibin Zhou; Zhijian Liu

GADD45 gene has been implicated in cell cycle arrest, cell survival or apoptosis in a cell type specific and context-dependent manner. Members of GADD45 gene family have been found differentially expressed in several podocyte injury models, but their roles in podocytes are unclear. Using an in vivo zebrafish model of inducible podocyte injury that we have previously established, we found that zebrafish orthologs of gadd45b were induced upon the induction of podocyte injury. Podocyte-specific overexpression of zebrafish gadd45b exacerbated edema, proteinuria and foot-process effacement, whereas knockdown of gadd45b by morpholino-oligos in zebrafish larvae ameliorated podocyte injury. We then explored the role of GADD45B induction in podocyte injury using in vitro podocyte culture. We confirmed that GADD45B was significantly upregulated during the early phase of podocyte injury in cultured human podocytes and that podocyte apoptosis induced by TGF-β and puromycin aminonucleoside (PAN) was aggravated by GADD45B overexpression but ameliorated by shRNA-mediated GADD45B knockdown. We also showed that ROS inhibitor NAC suppressed PAN-induced GADD45B expression and subsequent activation of p38 MAPK pathway in podocytes and that inhibition of GADD45B diminished PAN-induced p38 MAPK activation. Taken together, our findings demonstrated that GADD45B has an important role in podocyte injury and may be a therapeutic target for the management of podocyte injury in glomerular diseases.


Scientific Reports | 2016

Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy

Shuzhen Wen; Katarzyna Niedzwiecka; Weiwei Zhao; Shutian Xu; Shaoshan Liang; Xiaodong Zhu; Honglang Xie; Déborah Tribouillard-Tanvier; Marie-France Giraud; Caihong Zeng; Alain Dautant; Roza Kucharczyk; Zhihong Liu; Jean-Paul di Rago; Huimei Chen

Here we elucidated the pathogenesis of a 14-year-old Chinese female who initially developed an isolated nephropathy followed by a complex clinical presentation with brain and muscle problems, which indicated that the disease process was possibly due to a mitochondrial dysfunction. Careful evaluation of renal biopsy samples revealed a decreased staining of cells induced by COX and NADH dehydrogenase activities, and a strong fragmentation of the mitochondrial network. These anomalies were due to the presence of a mutation in the mitochondrial ATP6 gene, G8969>A. This mutation leads to replacement of a highly conserved serine residue at position 148 of the a-subunit of ATP synthase. Increasing the mutation load in cybrid cell lines was paralleled by the appearance of abnormal mitochondrial morphologies, diminished respiration and enhanced production of reactive oxygen species. An equivalent of the G8969>A mutation in yeast had dramatic consequences on ATP synthase, with a block in proton translocation. The mutation was particularly abundant (89%) in the kidney compared to blood and urine, which is likely the reason why this organ was affected first. Based on these findings, we suggest that nephrologists should pay more attention to the possibility of a mitochondrial dysfunction when evaluating patients suffering from kidney problems.


Clinical Nephrology | 2015

Clinical and morphological features of fibronectin glomerulopathy: a report of ten patients from a single institution.

Huiping Chen; Hao Bao; Feng Xu; Xiaodong Zhu; Maoyan Zhu; Qian He; Caihong Zeng; Zhihong Liu

AIMS Fibronectin glomerulopathy is a rare glomerular disease caused by the progressive deposition of fibronectin. We report 10 Chinese patients with fibronectin glomerulopathy. METHODS Renal biopsies were performed on all patients, and the clinical and pathological parameters for all patients were analyzed. RESULTS There were 6 males and 4 females, with an average age of 29±8 years. One patient had a family history of renal disease, all patients presented with proteinuria, and 80% of them suffered nephrotic range proteinuria. No patient demonstrated gross hematuria. The levels of serum creatinine were elevated, and the eGFR was decreased in 5 patients. Renal biopsy revealed a lobulated glomerular tuft. Patients showed numerous periodic acid-Schiff-positive and fuchsinophilic deposits in the mesangial area and along the capillary loops. Immense levels of fibronectin were detected in the glomerulus after immunofluorescence analysis. An electron microscopy scan found numerous electron-dense deposits in the mesangial and subendothelial areas. Immune-electron microscopy confirmed that the deposits consisted of fibronectin. CONCLUSION Nephrotic proteinuria and massive intraglomerular fibronectin deposits are the most significant features of fibronectin glomerulopathy.


Journal of Morphology | 2016

Ultrastructural characterization of the pronephric glomerulus development in zebrafish

Xiaodong Zhu; Zhaohong Chen; Caihong Zeng; Ling Wang; Feng Xu; Qing Hou; Zhihong Liu

The zebrafish pronephros is a valuable model for studying kidney development and diseases. Ultrastructural studies have revealed that zebrafish and mammals share similarities in nephron structures such as podocytes, slit diaphragms, glomerular basement membrane, and endothelium. However, the basic ultrastructural features of the pronephric glomerulus during glomerulogenesis have not been characterized. To understand these features, it is instructive to consider the developmental process of the pronephros glomerulus. Here, we describe the ultrastructural features of pronephric glomerulus in detail from 24 h hours post‐fertilization (hpf) to 144 hpf, the period during which the pronephric glomerulus develops from initiation to its mature morphology. The pronephric glomerulus underwent progressive morphogenesis from 24 to 72 hpf, and presumptive glomerular cells were observed ventral to the aorta region at 24 hpf. The nascent glomerular basement membrane and initial lumen were formed at 36 hpf. A lumen was clearly visible in the region of the pronephros at 48 hpf. At 60 hpf, the pronephric glomerulus contained more patches of capillaries. After these transformations, the complex capillary vessel networks had formed inside the glomerulus, which was surrounded by podocyte bodies with elaborate foot processes as well as well‐formed glomerular basement membrane by 72 hpf. The number of renal glomerular cells rapidly increased, and the glomerulus presented its delicate structural features by 96 hpf. Morphogenesis was completed at 120 hpf with the final formation of the pronephric glomerulus. J. Morphol. 277:1104–1112, 2016.


Histopathology | 2015

Clinical and morphological features of collagen type III glomerulopathy: a report of nine cases from a single institution

Hao Bao; Huiping Chen; Xiaodong Zhu; Feng Xu; Maoyan Zhu; Minchao Zhang; Qian He; Caihong Zeng; Zhihong Liu

We report nine Chinese patients with collagen type III glomerulopathy.


Scientific Reports | 2018

Triptolide attenuates proteinuria and podocyte apoptosis via inhibition of NF-κB/ GADD45B

Ling Wang; Liwen Zhang; Qing Hou; Xiaodong Zhu; Zhaohong Chen; Zhihong Liu

Podocyte injury is a primary contributor to proteinuria. Triptolide is a major active component of Tripterygium wilfordii Hook F that exhibits potent antiproteinuric effects. We used our previously developed in vivo zebrafish model of inducible podocyte-target injury and found that triptolide treatment effectively alleviated oedema, proteinuria and foot process effacement. Triptolide also inhibited podocyte apoptosis in our zebrafish model and in vitro. We also examined the mechanism of triptolide protection of podocyte. Whole-genome expression profiles of cultured podocytes demonstrated that triptolide treatment downregulated apoptosis pathway-related GADD45B expression. Specific overexpression of gadd45b in zebrafish podocytes abolished the protective effects of triptolide. GADD45B is a mediator of podocyte apoptosis that contains typical NF-κB binding sites in the promoter region, and NF-κB p65 primarily transactivates this gene. Triptolide inhibited NF-κB signalling activation and binding of NF-κB to the GADD45B promoter. Taken together, our findings demonstrated that triptolide attenuated proteinuria and podocyte apoptosis via inhibition of NF-κB/GADD45B signalling, which provides a new understanding of the antiproteinuric effects of triptolide in glomerular diseases.

Collaboration


Dive into the Xiaodong Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge