Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaofan Zhou is active.

Publication


Featured researches published by Xiaofan Zhou.


PLOS Genetics | 2012

Phylogenetic and Transcriptomic Analysis of Chemosensory Receptors in a Pair of Divergent Ant Species Reveals Sex-Specific Signatures of Odor Coding

Xiaofan Zhou; Jesse Slone; Antonis Rokas; Shelley L. Berger; Jürgen Liebig; Anandasankar Ray; Danny Reinberg; Laurence J. Zwiebel

Ants are a highly successful family of insects that thrive in a variety of habitats across the world. Perhaps their best-known features are complex social organization and strict division of labor, separating reproduction from the day-to-day maintenance and care of the colony, as well as strict discrimination against foreign individuals. Since these social characteristics in ants are thought to be mediated by semiochemicals, a thorough analysis of these signals, and the receptors that detect them, is critical in revealing mechanisms that lead to stereotypic behaviors. To address these questions, we have defined and characterized the major chemoreceptor families in a pair of behaviorally and evolutionarily distinct ant species, Camponotus floridanus and Harpegnathos saltator. Through comprehensive re-annotation, we show that these ant species harbor some of the largest yet known repertoires of odorant receptors (Ors) among insects, as well as a more modest number of gustatory receptors (Grs) and variant ionotropic glutamate receptors (Irs). Our phylogenetic analyses further demonstrate remarkably rapid gains and losses of ant Ors, while Grs and Irs have also experienced birth-and-death evolution to different degrees. In addition, comparisons of antennal transcriptomes between sexes identify many chemoreceptors that are differentially expressed between males and females and between species. We have also revealed an agonist for a worker-enriched OR from C. floridanus, representing the first case of a heterologously characterized ant tuning Or. Collectively, our analysis reveals a large number of ant chemoreceptors exhibiting patterns of differential expression and evolution consistent with sex/species-specific functions. These differentially expressed genes are likely associated with sex-based differences, as well as the radically different social lifestyles observed between C. floridanus and H. saltator, and thus are targets for further functional characterization. Our findings represent an important advance toward understanding the molecular basis of social interactions and the differential chemical ecologies among ant species.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae

David C. Rinker; R. Jason Pitts; Xiaofan Zhou; Eunho Suh; Antonis Rokas; Laurence J. Zwiebel

Olfactory-driven behaviors are central to the lifecycle of the malaria vector mosquito Anopheles gambiae and are initiated by peripheral signaling in the antenna and other olfactory tissues. To continue gaining insight into the relationship between gene expression and olfaction, we have performed cohort comparisons of antennal transcript abundances at five time points after a blood meal, a key event in both reproduction and disease transmission cycles. We found that more than 5,000 transcripts displayed significant abundance differences, many of which were correlated by cluster analysis. Within the chemosensory gene families, we observed a general reduction in the level of chemosensory gene transcripts, although a subset of odorant receptors (AgOrs) was modestly enhanced in post–blood-fed samples. Integration of AgOr transcript abundance data with previously characterized AgOr excitatory odorant response profiles revealed potential changes in antennal odorant receptivity that coincided with the shift from host-seeking to oviposition behaviors in blood-fed female mosquitoes. Behavioral testing of ovipositing females to odorants highlighted by this synthetic analysis identified two unique, unitary oviposition cues for An. gambiae, 2-propylphenol and 4-methylcyclohexanol. We posit that modest, yet cumulative, alterations of AgOr transcript levels modulate peripheral odor coding resulting in biologically relevant behavioral effects. Moreover, these results demonstrate that highly quantitative, RNAseq transcript abundance data can be successfully integrated with functional data to generate testable hypotheses.


BMC Evolutionary Biology | 2008

Evolutionary history of histone demethylase families: distinct evolutionary patterns suggest functional divergence.

Xiaofan Zhou; Hong Ma

BackgroundHistone methylation can dramatically affect chromatin structure and gene expression and was considered irreversible until recent discoveries of two families of histone demethylases, the KDM1 (previously LSD1) and JmjC domain-containing proteins. These two types of proteins have different functional domains and distinct substrate specificities. Although more and more KDM1 and JmjC proteins have been shown to have histone demethylase activity, our knowledge about their evolution history is limited.ResultsWe performed systematic phylogenetic analysis of these histone demethylase families and uncovered different evolutionary patterns. The KDM1 genes have been maintained with a stable low copy number in most organisms except for a few duplication events in flowering plants. In contrast, multiple genes for JmjC proteins with distinct domain architectures were present before the split of major eukaryotic groups, and experienced subsequent birth-and-death evolution. In addition, distinct evolutionary patterns can also be observed between animal and plant histone demethylases in both families. Furthermore, our results showed that some JmjC subfamilies contain only animal genes with specific demethylase activities, but do not have plant members.ConclusionOur study improves the understanding about the evolutionary history of KDM1 and JmjC genes and provides valuable insights into their functions. Based on the phylogenetic relationship, we discussed possible histone demethylase activities for several plant JmjC proteins. Finally, we proposed that the observed differences in evolutionary pattern imply functional divergence between animal and plant histone demethylases.


BMC Genomics | 2013

Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae

David C. Rinker; Xiaofan Zhou; R. J. Pitts; Antonis Rokas; Laurence J. Zwiebel

BackgroundTwo sibling members of the Anopheles gambiae species complex display notable differences in female blood meal preferences. An. gambiae s.s. has a well-documented preference for feeding upon human hosts, whereas An. quadriannulatus feeds on vertebrate/mammalian hosts, with only opportunistic feeding upon humans. Because mosquito host-seeking behaviors are largely driven by the sensory modality of olfaction, we hypothesized that hallmarks of these divergent host seeking phenotypes will be in evidence within the transcriptome profiles of the antennae, the mosquito’s principal chemosensory appendage.ResultsTo test this hypothesis, we have sequenced antennal mRNA of non-bloodfed females from each species and observed a number of distinct quantitative and qualitative differences in their chemosensory gene repertoires. In both species, these gene families show higher rates of sequence polymorphisms than the overall rates in their respective transcriptomes, with potentially important divergences between the two species. Moreover, quantitative differences in odorant receptor transcript abundances have been used to model potential distinctions in volatile odor receptivity between the two sibling species of anophelines.ConclusionThis analysis suggests that the anthropophagic behavior of An. gambiae s.s. reflects the differential distribution of olfactory receptors in the antenna, likely resulting from a co-option and refinement of molecular components common to both species. This study improves our understanding of the molecular evolution of chemoreceptors in closely related anophelines and suggests possible mechanisms that underlie the behavioral distinctions in host seeking that, in part, account for the differential vectorial capacity of these mosquitoes.


G3: Genes, Genomes, Genetics | 2016

Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data

Xing-Xing Shen; Xiaofan Zhou; Jacek Kominek; Cletus P. Kurtzman; Chris Todd Hittinger; Antonis Rokas

Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.


Cell Research | 2006

Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice

Danhua Jiang; Changsong Yin; Aiping Yu; Xiaofan Zhou; Wanqi Liang; Zheng Yuan; Yun Xu; Qingbo Yu; Tieqiao Wen; Dabing Zhang

To understand the expansion of multicopy microRNA (miRNA) families in plants, we localized the reported miRNA genes from Arabidopsis and rice to their chromosomes, respectively, and observed that 37% of 117 miRNA genes from Arabidopsis and 35% of 173 miRNA genes from rice were segmental duplications in the genome. In order to characterize whether the expression diversification has occurred among plant multicopy miRNA family members, we designed PCR primers targeting 48 predicted miRNA precursors from 10 families in Arabidopsis and rice. Results from RT-PCR data suggest that the transcribed precursors of members within the same miRNA family were present at different expression levels. In addition, although miR160 and miR162 sequences were conserved in Arabidopsis and rice, we found that the expression patterns of these genes differed between the two species. These data suggested that expression diversification has occurred in multicopy miRNA families, increasing our understanding of the expression regulation of miRNAs in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Odorant receptor-mediated sperm activation in disease vector mosquitoes

R. J. Pitts; Chao Liu; Xiaofan Zhou; Malpartida Jc; Laurence J. Zwiebel

Significance Mosquitoes use neuronal-expressed odorant receptors in their antennae to locate blood meal sources via chemical cues emitted by hosts. Although their expression in nonsensory tissues is known, the potential for odorant receptors to also mediate endogenous signaling events in insects has remained unexplored. In this study, we have identified a subset of odorant receptors showing transcript expression in the testes of the malaria mosquito, Anopheles gambiae. In addition, we provide functional evidence that the broadly conserved insect coreceptor, Orco, mediates flagellar activation in mosquito spermatozoa. These results are reminiscent of odorant receptor function in human sperm and may represent an intriguing example of convergent evolution. Insects, such as the malaria vector mosquito, Anopheles gambiae, depend upon chemoreceptors to respond to volatiles emitted from a range of environmental sources, most notably blood meal hosts and oviposition sites. A subset of peripheral signaling pathways involved in these insect chemosensory-dependent behaviors requires the activity of heteromeric odorant receptor (OR) ion channel complexes and ligands for numerous A. gambiae ORs (AgOrs) have been identified. Although AgOrs are expressed in nonhead appendages, studies characterizing potential AgOr function in nonolfactory tissues have not been conducted. In the present study, we explore the possibility that AgOrs mediate responses of spermatozoa to endogenous signaling molecules in A. gambiae. In addition to finding AgOr transcript expression in testes, we show that the OR coreceptor, AgOrco, is localized to the flagella of A. gambiae spermatozoa where Orco-specific agonists, antagonists, and other odorant ligands robustly activate flagella beating in an Orco-dependent process. We also demonstrate Orco expression and Orco-mediated activation of spermatozoa in the yellow fever mosquito, Aedes aegypti. Moreover, we find Orco localization in testes across distinct insect taxa and posit that OR-mediated responses in spermatozoa may represent a general characteristic of insect reproduction and an example of convergent evolution.


Genome Biology and Evolution | 2015

Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality

Xiaofan Zhou; Antonis Rokas; Shelley L. Berger; Jürgen Liebig; Anandasankar Ray; Laurence J. Zwiebel

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives, a comprehensive examination of this hypothesis has not been possible. Here, we annotate ∼3,000 odorant and gustatory receptors in recently sequenced Hymenoptera genomes and systematically compare >4,000 chemoreceptors from 13 hymenopterans, representing one solitary lineage (wasps) and three independently evolved eusocial lineages (ants and two bees). We observe a strong general tendency for chemoreceptors to expand in Hymenoptera, whereas the specifics of gene gains/losses are highly diverse between lineages. We also find more frequent positive selection on chemoreceptors in a facultative eusocial bee and in the common ancestor of ants compared with solitary wasps. Our results suggest that the frequent expansions of chemoreceptors have facilitated the transition to eusociality. Divergent expression patterns of odorant receptors between honeybee and ants further indicate differential roles of chemoreceptors in parallel trajectories of social evolution.


Cell | 2017

An Engineered orco Mutation Produces Aberrant Social Behavior and Defective Neural Development in Ants

Hua Yan; Comzit Opachaloemphan; Giacomo Mancini; Huan Yang; Matthew Gallitto; Jakub Mlejnek; Alexandra Leibholz; Kevin L. Haight; Majid Ghaninia; Lucy Huo; Michael W. Perry; Jesse Slone; Xiaofan Zhou; Maria Traficante; Clint A. Penick; Kelly Dolezal; Kaustubh Gokhale; Kelsey Stevens; Ingrid Fetter-Pruneda; Roberto Bonasio; Laurence J. Zwiebel; Shelley L. Berger; Jürgen Liebig; Danny Reinberg; Claude Desplan

Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality.


Genome Biology and Evolution | 2014

Divergent and Conserved Elements Comprise the Chemoreceptive Repertoire of the Nonblood-Feeding Mosquito Toxorhynchites amboinensis

Xiaofan Zhou; David C. Rinker; R. J. Pitts; Antonis Rokas; Laurence J. Zwiebel

Many mosquito species serve as vectors of diseases such as malaria and yellow fever, wherein pathogen transmission is tightly associated with the reproductive requirement of taking vertebrate blood meals. Toxorhynchites is one of only three known mosquito genera that does not host-seek and initiates egg development in the absence of a blood-derived protein bolus. These remarkable differences make Toxorhynchites an attractive comparative reference for understanding mosquito chemosensation as it pertains to host-seeking. We performed deep transcriptome profiling of adult female Toxorhynchites amboinensis bodies, antennae and maxillary palps, and identified 25,084 protein-coding “genes” in the de novo assembly. Phylogenomic analysis of 4,266 single-copy “genes” from T. amboinensis, Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus robustly supported Ae. aegypti as the closest relative of T. amboinensis, with the two species diverged approximately 40 Ma. We identified a large number of T. amboinensis chemosensory “genes,” the majority of which have orthologs in other mosquitoes. Finally, cross-species expression analyses indicated that patterns of chemoreceptor transcript abundance were very similar for chemoreceptors that are conserved between T. amboinensis and Ae. aegypti, whereas T. amboinensis appeared deficient in the variety of expressed, lineage-specific chemoreceptors. Our transcriptome assembly of T. amboinensis represents the first comprehensive genomic resource for a nonblood-feeding mosquito and establishes a foundation for future comparative studies of blood-feeding and nonblood-feeding mosquitoes. We hypothesize that chemosensory genes that display discrete patterns of evolution and abundance between T. amboinensis and blood-feeding mosquitoes are likely to play critical roles in host-seeking and hence the vectorial capacity.

Collaboration


Dive into the Xiaofan Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Todd Hittinger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cletus P. Kurtzman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jacek Kominek

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shelley L. Berger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dana A. Opulente

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge