Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaofang Jia is active.

Publication


Featured researches published by Xiaofang Jia.


BMC Cancer | 2010

Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines

Zhiyu Zhang; Lijun Zhang; Yingqi Hua; Xiaofang Jia; Jian Li; Shuo Hu; Xia Peng; Pengyuan Yang; Mengxiong Sun; Fang Ma; Zhengdong Cai

BackgroundOsteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research.MethodsAn osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry.Results342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry.ConclusionIt is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers.


Proteome Science | 2010

Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins

Lijun Zhang; Xiaofang Jia; Xiaojun Zhang; Jianjun Sun; Xia Peng; Tangkai Qi; Fang Ma; Lin Yin; Yamin Yao; Chao Qiu; Hongzhou Lu

BackgroundThe human immunodeficiency virus type 1 (HIV-1) pandemic has continued unabated for nearly 30 years. To better understand the influence of virus on host cells, we performed the differential proteome research of peripheral blood mononuclear cells (PBMCs) from HIV-positive patients and healthy controls.Results26 protein spots with more than 1.5-fold difference were detected in two dimensional electrophoresis (2DE) gels. 12 unique up-regulated and one down-regulated proteins were identified in HIV-positive patients compared with healthy donors. The mRNA expression of 10 genes was analyzed by real time RT-PCR. It shows that the mRNA expression of talin-1, vinculin and coronin-1C were up-regulated in HIV positive patients and consistent with protein expression. Western blotting analysis confirmed the induction of fragments of vinculin, talin-1 and filamin-A in pooled and most part of individual HIV-positive clinical samples. Bioinformatic analysis showed that a wide host protein network was disrupted in HIV-positive patients.ConclusionsTogether, this work provided useful information to facilitate further investigation of the underlying mechanism of HIV and host cell protein interactions, and discovered novel potential biomarkers such as fragment of vinculin, filamin-A and talin-1 for anti-HIV research.


Journal of Cellular Biochemistry | 2010

Subcellular proteome analysis unraveled annexin A2 related to immune liver fibrosis

Lijun Zhang; Xia Peng; Zhanqin Zhang; Yanling Feng; Xiaofang Jia; Yuxin Shi; Hua Yang; Zhiyong Zhang; Xiaonan Zhang; Liwen Liu; Lin Yin; Zhenghong Yuan

It is important to study the mechanism of liver fibrogenesis, and find new non‐invasive biomarkers. In this study, we used subcellular proteomic technology to study the plasma membrane (PM) proteins related to immune liver fibrosis and search for new non‐invasive biomarkers. A rat liver fibrosis model was induced by pig serum injection. The liver fibrogenesis from stage (S) S0‐1, S2, S3‐4, and S4 was detected by Masson staining and HE staining in this rat model after 2, 4, 6, and 8 weeks of treatment. The liver PM was enriched and analyzed using subcellular proteomic technology. The differentially expressed proteins were verified by Western blotting, immunohistochemistry, and ELISA. PM with 149‐fold purification was obtained and 22 differentially expressed proteins were identified. Of which, annexin A2 (ANXA2) was detected to be increased obviously in S4 compared with S0‐1, and verified by Western blotting of rat liver tissue and immunohistochemistry of rat and human liver tissue. The expression of ANXA2 in human plasma with S1‐2 was also found to be up‐regulated for 1.4‐fold than that in S0. Furthermore, ANXA2 was detected to translocate from nuclear membrane and cytosol to PM as HBV stimulation through immunocytochemical analysis in vitro. This study identified 22 differentially expressed proteins related to liver fibrosis, and verified a potential biomarker (ANXA2) for non‐invasive diagnosis of immune liver fibrosis. To our knowledge, it was the first time to dynamically study the proteins related to liver fibrosis and select biomarkers for liver fibrosis diagnosis through PM proteome research. J. Cell. Biochem. 110: 219–228, 2010.


Tumor Biology | 2011

Plasma membrane proteomic analysis of human osteosarcoma and osteoblastic cells: revealing NDRG1 as a marker for osteosarcoma.

Yingqi Hua; Xiaofang Jia; Mengxiong Sun; Longpo Zheng; Lin Yin; Lijun Zhang; Zhengdong Cai

Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. To identify new biomarkers for early diagnosis of OS and novel therapeutic candidates, we carried out a plasma membrane proteomic study based on two-dimensional electrophoresis (2DE). The OS cell line MG-63 and the human osteoblastic cell line hFOB1.19 were adopted as the comparison model. We extracted plasma membrane by aqueous two-phase partition extraction. The proteins were separated through 2DE. We analyzed the differentially expressed proteins by Imagemaster software and then identified them by liquid chromatography–tandem mass spectrometry, and the location and function of differential proteins were searched through the Gene Ontology database. In total, 220 protein spots were separated by 2DE. Seven proteins with more than 2.0-folds of difference were successfully identified from 13 gel spots, with 6 up-regulated and 1 down-regulated. Gene Ontology analysis of the differentially expressed proteins indicated that these proteins were involved in seven kinds of functions including binding, structural, cell motility, receptor activity, electron carrier activity, NADH dehydrogenase (ubiquinone) activity, and transcription repressor activity. The up-regulation of NDRG1 was verified in osteosarcoma through Western blotting and by immunohistochemistry in paraffin-embedded tissues. The plasma membrane proteins identified in this study may provide new insights into osteosarcoma cancer biology and potential diagnostic and therapeutic biomarkers.


Acta Biochimica et Biophysica Sinica | 2010

Development and validation of a liquid chromatography–mass spectrometry metabonomic platform in human plasma of liver failure caused by hepatitis B virus

Lijun Zhang; Xiaofang Jia; Xia Peng; Qiang Ou; Zhengguo Zhang; Chao Qiu; Yamin Yao; Fang Shen; Hua Yang; Fang Ma; Jiefei Wang; Zhenghong Yuan

This paper presents an liquid chromatography (LC)/mass spectrometry (MS)-based metabonomic platform that combined the discovery of differential metabolites through principal component analysis (PCA) with the verification by selective multiple reaction monitoring (MRM). These methods were applied to analyze plasma samples from liver disease patients and healthy donors. LC-MS raw data (about 1000 compounds), from the plasma of liver failure patients (n = 26) and healthy controls (n = 16), were analyzed through the PCA method and a pattern recognition profile that had significant difference between liver failure patients and healthy controls (P < 0.05) was established. The profile was verified in 165 clinical subjects. The specificity and sensitivity of this model in predicting liver failure were 94.3 and 100.0%, respectively. The differential ions with m/z of 414.5, 432.0, 520.5, and 775.0 were verified to be consistent with the results from PCA by MRM mode in 40 clinical samples, and were proved not to be caused by the medicines taken by patients through rat model experiments. The compound with m/z of 520.5 was identified to be 1-Linoleoylglycerophosphocholine or 1-Linoleoylphosphatidylcholine through exact mass measurements performed using Ion Trap-Time-of-Flight MS and METLIN Metabolite Database search. In all, it was the first time to integrate metabonomic study and MRM relative quantification of differential peaks in a large number of clinical samples. Thereafter, a rat model was used to exclude drug effects on the abundance of differential ion peaks. 1-Linoleoylglycerophosphocholine or 1-Linoleoylphosphatidylcholine, a potential biomarker, was identified. The LC/MS-based metabonomic platform could be a powerful tool for the metabonomic screening of plasma biomarkers.


Acta Biochimica et Biophysica Sinica | 2011

Plasma membrane proteome analysis of the early effect of alcohol on liver: implications for alcoholic liver disease

Lijun Zhang; Xiaofang Jia; Yanling Feng; Xia Peng; Zhiyong Zhang; Wenjiang Zhou; Zhanqing Zhang; Fang Ma; Xiaohui Liu; Ye Zheng; Pengyuan Yang; Zhenghong Yuan

In humans, the over-consumption of alcohol can lead to serious liver disease. To examine the early effects of alcohol on liver disease, rats were given sufficient ethanol to develop liver cirrhosis. Rats before the onset of fibrosis were studied in this work. Plasma membranes (PM) of liver were extracted by twice sucrose density gradient centrifugation. The proteome profiles of PM from ethanol-treated rats and the controls were analyzed using two-dimensional gel electrophoresis (2-DE) and isobaric tag for relative and absolute quantitation (iTRAQ) technology. Ethanol treatment altered the amount of 15 different liver proteins: 10 of them were detected by 2-DE and 5 by iTRAQ. Keratin 8 was detected by both methods. Gene ontology analysis of these differentially detected proteins indicated that most of them were involved in important cell functions such as binding activity (including ion, DNA, ATP binding, etc.), cell structure, or enzyme activity. Among these, annexin A2, keratin 8, and keratin 18 were further verified using western blot analysis and annexin A2 was verified by immunohistochemistry. Our results suggested that alcohol has the potential to affect cell structure, adhesion and enzyme activity by altering expression levels of several relevant proteins in the PM. To the best of our knowledge, this is the first time to study the effect of alcohol on the liver PM proteome and it might be helpful for understanding the possible mechanisms of alcohol-induced liver disease.


Biomedicine & Pharmacotherapy | 2013

Serum proteomic MRM identify peptide ions of transferrin as new fibrosis markers in chronic hepatitis B

Ming-Yi Xu; Ying Qu; Xiaofang Jia; Mei-Ling Wang; Heng Liu; Xingpeng Wang; Lijun Zhang; Lun-Gen Lu

BACKGROUND AND AIM Because of the limitations of liver biopsy, reliable non-invasive serum biomarkers of liver fibrosis are needed. The aim of this study was to identify such markers by the use of serum proteomics in chronic hepatitis B (CHB). METHODS Two-dimensional gel electrophoresis (2-DE) was used to identify differentially expressed protein spots in sera from 40 CHB patients [20 with mild fibrosis (S0-S1) and 20 with severe fibrosis (S3-S4)]. Mass spectrometry (MS) based multiple reaction monitoring (MRM) was used to quantify peptide ions of differential protein spots in another set of sera from 86 CHB patients with different liver fibrosis (S0-S4). RESULTS Seven differentially expressed protein spots were found by 2-DE. Fourteen peptide ions of seven target protein spots were quantified by MS-based MRM. Summed peak areas ratio (SPAR) values of peptide ions from protein spot 1, 4 and 8, identified as apo serum transferrin, complement component C3c and transferrin, were significantly different from non-fibrosis (S0) to fibrosis stage 4. AUROCs of models established by peptide ions (protein spot 1, 4, 8) and model consisting of a combination of all ions were 0.848∼0.966 (S2-S4 versus S0-S1) and 0.785∼0.875 (S3-S4 versus S0-S2). Only the peptide ions model of transferrin had better sensitivity and specificity for predicting fibrosis stages than did aspartate aminotransferase-to-platelet ratio index (APRI), FIB-4 and Forns index. CONCLUSIONS Serum peptide ions of transferrin, detected by proteomic MRM, are new and promising biomarkers for staging liver fibrosis in CHB patients.


Science China-life Sciences | 2014

Proteome analysis of hepatic non-parenchymal cells of immune liver fibrosis rats

QianQian Zhao; Yanling Feng; Xiaofang Jia; Lin Yin; Ye Zheng; DongSheng Ouyang; HongHao Zhou; Lijun Zhang

Elucidation of the mechanisms of liver fibrogenesis is important to treat liver fibrosis. In this study, we established rat models of liver fibrosis with stages from 0–1, 2, and 3–4 to 4 at 2, 4, 6, and 8 weeks, respectively, by injection of pig serum. Liver fibrogenesis was detected by Masson’s trichrome staining. Rat non-parenchymal cells (NPCs) were enriched 4-fold by Percoll density gradient centrifugation. Protein extracts from NPCs were prepared at 4 and 8 weeks, separated by two-dimensional electrophoresis, and then stained with Coomassie Blue G-250. At 4 weeks, we identified 18 non-redundant differentially expressed proteins of which protein disulfide-isomerase associated protein 3 (PDIA3) and NDUV showed consistent expression at protein and mRNA levels from 4 to 8 weeks. PDIA3 was found to be down-regulated by Western blotting in the rat model and immunohistochemically in human liver. Our results revealed important aspects of the pathogenesis/progression of liver fibrosis and demonstrated important changes in protein expression levels of NPCs at various stages of liver fibrosis.


Molecular & Cellular Proteomics | 2017

Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line

Xiaofang Jia; Jieliang Chen; Dominik A. Megger; Xiaonan Zhang; Maya Kozlowski; Lijun Zhang; Zhong Fang; Jin Li; Qiaofang Chu; Min Wu; Yaming Li; Barbara Sitek; Zhenghong Yuan

Hepatitis B virus (HBV) infection is a major health problem worldwide. Recent evidence suggests that some viruses can manipulate the infection process by packing specific viral and cellular components into exosomes, small nanometer-sized (30–150 nm) vesicles secreted from various cells. However, the impact of HBV replication on the content of exosomes produced by hepatocytes has not been fully delineated. In this work, an HBV-inducible cell line HepAD38 was used to directly compare changes in the protein content of exosomes secreted from HepAD38 cells with or without HBV replication. Exosomes were isolated from supernantants of HepAD38 cells cultured with or without doxycycline (dox) and their purity was confirmed by transmission electron microscopy (TEM) and Western immunoblotting assays. Ion-intensity based label-free LC-MS/MS quantitation technologies were applied to analyze protein content of exosomes from HBV replicating cells [referred as HepAD38 (dox−)-exo] and from HBV nonreplicating cells [referred as HepAD38 (dox+)-exo]. A total of 1412 exosomal protein groups were identified, among which the abundance of 35 proteins was significantly changed following HBV replication. Strikingly, 5 subunit proteins from the 26S proteasome complex, including PSMC1, PSMC2, PSMD1, PSMD7 and PSMD14 were consistently enhanced in HepAD38 (dox−)-exo. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the proteasomal catabolic process. Proteasome activity assays further suggested that HepAD38 (dox−)-exo had enhanced proteolytic activity compared with HepAD38 (dox+)-exo. Furthermore, human peripheral monocytes incubated with HepAD38 (dox−)-exo induced a significantly lower level of IL-6 secretion compared with IL-6 levels from HepAD38 (dox+)-exo. Irreversible inhibition of proteasomal activity within exosomes restored higher production of IL-6 by monocytes, suggesting that transmission of proteasome subunit proteins by HepAD38 (dox−)-exo might modulate the production of pro-inflammatory molecules in the recipient monocytes. These results revealed the composition and potential function of exosomes produced during HBV replication, thus providing a new perspective on the role of exosomes in HBV-host interaction.


Proteome Science | 2012

A dynamic plasma membrane proteome analysis of alcohol-induced liver cirrhosis

Xiaofang Jia; Lin Yin; Yanling Feng; Xia Peng; Fang Ma; Yamin Yao; Xiaoqian Liu; Zhiyong Zhang; Zhenghong Yuan; Lijun Zhang

Alcohol-induced injury has become one of the major causes for liver cirrhosis. However, the molecular mechanisms of ethanol-induced injury are not fully understood. To this end, we performed a dynamic plasma membrane proteomic research on rat model. A rat model from hepatitis to liver cirrhosis was developed. Plasma membrane from liver tissue with liver fibrosis stage of 2 and 4 (S2 and S4) was purified by sucrose density gradient centrifugation. Its purification was verified by western blotting. Proteins from plasma membrane were separated by two-dimensional electrophoresis (2DE) and differentially expressed proteins were identified by tandem mass spectrometry. 16 consistent differentially expressed proteins from S2 to S4 were identified by mass spectrometry. The expression of differentially expressed proteins annexin A6 and annexin A3 were verified by western blotting, and annexin A3 was futher verified by immunohistochemistry. Our research suggests a possible mechanism by which ethanol alters protein expression to enhance the liver fibrosis progression. These differentially expressed proteins might be new drug targets for treating alcoholic liver cirrhosis.

Collaboration


Dive into the Xiaofang Jia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lun-Gen Lu

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge